Tietze 扩张定理

定义 1 (度量空间). 设定义在集合 $X \times X$ 上的一个实值函数 d, 对任意 $x, y, z \in X$, 满足

- 1. $d(x,y) \geqslant 0 \iff x = y$ 取等;
- 2. d(x,y) = d(y,x);
- 3. $d(x,y) + d(y,z) \ge d(x,z)$,

则称 d 为 X 上的一个度量,(X,d) 为一个度量空间.

度量空间是一种特殊的拓扑空间,我们赋予了开集的意义.

定义 2 (开球). 对 $x \in X$,定义 x 的开球 $B(x,\varepsilon) = \{y \in X : d(x,y) < \varepsilon\}$,其中 $\varepsilon > 0$,称为 开球 B 的半径.

定义 3. 设 $O \subset X$, 对任意 $x \in O$, 总存在开球 $B(x,\varepsilon) \subset O$, 则称 O 为开集.

容易验证,这样定义的开集满足拓扑公理.

度量空间中离散的两个点,可以被两个不交的开集包含,称这种性质为 Hausdorff 性. 一般地,可以定义 Hausdorff 空间.

定义 4. 对任意 $x, y \in X$, $x \neq y$, 若总存在开集 O_x , O_y 满足 $O_x \cap O_y = \emptyset$, 则称 X 为 Hausdorff 空间.

并非所有拓扑空间都具有 Hausdorff 性,例如有限补拓扑空间,包含任意两个离散的点的开集总相交.

定义 5 (点到点集的距离). 设 $x \in X$, $A \subset X$, 定义 x 到 A 的距离

$$d(x, A) = \inf \{ d(x, y) : y \in A \}$$
.

引理 1. 定义的 d(x,A) 对 x 是连续的.

证明. 对任意 $\varepsilon > 0$, $x_0 \in X$, 使得 $d(x, x_0) < \varepsilon/2$, 存在 $y \in A$ 满足 $d(x_0, y) < d(x_0, A) + \varepsilon/2$, 则有

$$d(x,A) \leqslant d(x,y) \leqslant d(x,x_0) + d(x_0,y) < d(x_0,A) + \varepsilon,$$

将 x 与 x_0 互换,有 $d(x_0, A) < d(x, A) + \varepsilon$,故 $|d(x, A) - d(x_0, A)| < \varepsilon$.

引理 2. $d(x,A)=0 \iff x \in \overline{A}$.

证明. \Rightarrow : $d(x,A) = \inf d(x,y) = 0, y \in A$,于是对任意 $\varepsilon > 0$,存在 y_0 ,有

$$d(x, y_0) < \inf d(x, y) + \varepsilon = \varepsilon,$$

故 $B(x,\varepsilon)\setminus\{x\}\cap A\neq\emptyset$.

 \Leftarrow : $x \in \overline{A}$,故存在开集 $U \ni x$ 满足 $U \setminus \{x\} \cap A \neq \emptyset$,对任意 $\varepsilon > 0$,总存在 $y_0 \in A$,使 得 $d(x,y_0) < \varepsilon$,故 $d(x,A) = \inf d(x,y_0) = 0$.

引理 3 (Urysohn). 设 A,B 为 X 上的两个不交闭集,则存在 X 上的连续函数 f 使得 $|f(x)| \le 1$, $f|_A = 1$, $f|_B = -1$.

证明. 因为 A, B 为不交闭集, 则 $d(x,A) + d(x,B) \neq 0$, 定义函数

$$f(x) = \frac{d(x,B) - d(x,A)}{d(x,A) + d(x,B)},$$

则由引理 1, 得 f(x) 为符合条件的连续函数.

定理 1 (Tietze). 定义在度量空间中一闭集上的连续实值函数可以延拓到整个空间.

证明. 设 F 为 X 上的一闭集,f 是定义在 F 上的连续函数. 先考虑 f 有界的情形,即存在 M>0,使得 $|f(x)|\leqslant M$.

设 $A = \{x \in F : M/3 \le f(x) \le M\}$, $B = \{x \in F : -M \le f(x) \le -M/3\}$, 由于连续映射下,闭集的原像仍为闭集,于是 A, B 为不交闭集. 由引理 3, 定义函数

$$g_1(x) = \frac{M}{3} \cdot \frac{d(x,B) - d(x,A)}{d(x,A) + d(x,B)}, \quad x \in X,$$

则 $|g_1(x)| \leqslant \frac{M}{3}$, $|f(x) - g_1(x)| \leqslant \frac{2M}{3}$,下面以 $f(x) - g_1(x)$ 为新的连续函数来研究,则有

$$|g_2(x)| \le \frac{2}{3} \cdot \frac{M}{3},$$

 $|f(x) - g_1(x) - g_2(x)| \le \frac{2}{3} \cdot \frac{2M}{3}.$

同理,对任意 $k \in \mathbb{Z}^+$,有

$$|g_k(x)| \leqslant \left(\frac{2}{3}\right)^{k-1} \cdot \frac{M}{3},$$
$$\left| f(x) - \sum_{i=1}^k g_i(x) \right| \leqslant \frac{2^k M}{3^k},$$

由 Weierstrass 判别法可知 $\sum g_k(x)$ 是一致收敛的,记其和函数为 g(x),则

$$g(x) = \sum_{k=1}^{\infty} g_k(x) = f(x).$$

且

$$|g(x)| \le \sum_{k=1}^{\infty} |g_k(x)| \le M \sum_{k=1}^{\infty} \frac{2^{k-1}}{3^k} = M.$$

当 f 无界时,考虑 $\arctan f(x)$ 即可.