
存在和唯一性定理

定义 1 (Lipschitz 条件). 设函数 f(x, y) 在区域 D 内满足不等式

|f(x, y1)− f(x, y2)| ⩽ L|y1 − y2|,

其中常数 L > 0，则称函数 f(x, y)在区域 D 内对 y 满足 Lipschitz 条件. 称 L为 Lipschitz
常数.

Lipschitz 条件是一个比通常连续更强的光滑性条件。直觉上，Lipschitz 连续函数限制
了函数改变的速度，符合 Lipschitz 条件的函数的斜率，必小于一个称为 Lipschitz 常数的实
数.

易知，若函数 f(x, y) 在凸区域 D 内对 y 有连续的偏微商，并且 D 是有界闭区域，则

f(x, y) 在 D 内对 y 满足 Lipschitz 条件；反之，结论不一定正确. 例如 f(x, y) = |y| 对 y 满

足 Lipschitz 条件，但当 y = 0 时它对 y 没有微商.
现在，我们要证明下述 Picard 定理.

定理 1 (Picard). 设初值问题

(E) :
dy
dx = f(x, y), y(x0) = y0,

其中 f(x, y) 在矩形区域

R : [x0 − a, x0 + a]× [y0 − b, y0 + b]

内连续，而且对 y 满足 Lipschitz 条件. 则 (E) 在区间 I = [x0 − h, x0 + h] 上有且仅有一个

解，其中常数

h = min
{
a,

b

M

}
, M > max

(x,y)∈R
|f(x, y)|.

为了突出思路，我们把证明分成四步：

(1) 将微分方程转化为对应的积分方程.

(2) 构造 Picard 序列 {yn(x)}.

(3) 证明 Picard 序列 yn(x) ⇒ y(x) 是方程的解.

(4) 证明解的唯一性.
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证明. (1) 先证明初值问题 (E) 有解 y = y(x)，等价于积分方程

y = y0 +

∫ x

x0

f(t, y) dt (1)

有解 y = y(x).
设 y = y(x) (x ∈ I) 是 (E) 的解，则有

y′(x) = f(x, y(x)) (x ∈ I)

和

y(x0) = y0.

由此，对上述微分方程进行积分并利用初值条件，得到

y(x) = y0 +

∫ x

x0

f(x, y(x)) dx (x ∈ I),

即 y = y(x) 是积分方程1的解.
反之，设 y = y(x) (x ∈ I) 是积分方程1的解，则只要逆转上面的推导就可知道 y = y(x)

是 (E) 的解.
因此，Picard 定理的证明等价于证明积分方程1在区间 I 上有且仅有一个解.
(2) 采用不动点的思想，用逐次迭代法构造 Picard 序列

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t)) dt (x ∈ I, n = 0, 1, 2, · · · ),

其中 y0(x) = y0.
当 n = 0 时，注意到 f(x, y0(x)) 是 I 上的连续函数，所以由递推式，有

y1(x) = y0(x) +

∫ x

x0

f(t, y0(t)) dt (x ∈ I)

在 I 上是连续可微的，而且满足不等式

|y1(x)− y0(x)| ⩽
∣∣∣∣∫ x

x0

|f(t, y0(t))| dt
∣∣∣∣ ⩽M |x− x0|.

这就是说，在区间 I 上 |y1(x)− y0| ⩽Mh ⩽ b.
因此，f(x, y1(x)) 在 I 上是连续的. 所以由递推式，有

y2(x) = y0(x) +

∫ x

x0

f(t, y1(t)) dt (x ∈ I)

在 I 上是连续可微的，而且满足不等式

|y2(x)− y1(x)| ⩽
∣∣∣∣∫ x

x0

|f(t, y1(t)) dt|
∣∣∣∣ ⩽M |x− x0|,
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从而我们有：|y2(x)− y0| ⩽Mh ⩽ b (x ∈ I).
如此类推，用归纳法不难证明：由递推式给出的 Picard 序列 {yn(x)} 在 I 上是连续的，

而且满足不等式

|yn(x)− y0| ⩽M |x− x0| (n = 0, 1, 2, · · · ).

(3) 现证：Picard 序列 {yn(x)} 在区间 I 上一致收敛到积分方程1的解.
序列 {yn(x)} 的收敛性等价于级数

∞∑
n=1

[yn+1(x)− yn(x)]

的收敛性.

|y2(x)− y1(x)| =
∣∣∣∣∫ x

x0

[f(t, y1(t))− f(t, y0(t))] dt
∣∣∣∣

⩽
∣∣∣∣∫ x

x0

|f(t, y1(t))− f(t, y0(t))| dt
∣∣∣∣

⩽ L

∣∣∣∣∫ x

x0

|y1(t)− y0(t)| dt
∣∣∣∣

⩽ LM

∣∣∣∣∫ x

x0

|t− x0| dt
∣∣∣∣

=
LM

2
(x− x0)

2 =
M

L

[L(x− x0)]
2

2

同理，可得

|yn+1(x)− yn(x)| ⩽ L

∣∣∣∣∫ x

x0

|yn(t)− yn−1(t)| dt
∣∣∣∣ ,

根据归纳法，可以证明

|yn+1(x)− yn(x)| ⩽
M

L

[L|x− x0|]n+1

(n+ 1)!
⩽ M

L

(Lh)n+1

(n+ 1)!
.

故
∞∑
j=0

|yj+1(x)− yj(x)| ⩽
M

L

∞∑
j=0

(Lh)j+1

(j + 1)!
.

则根据函数项级数的 Weierstrass 判别法，可知 {yn(x)} 一致收敛，因此对 Picard 序列的递
推式取极限，得

y(x) = lim
n→∞

yn(x) = y0 +

∫ x

x0

f(t, y(t)) dt.

故 Picard 序列的极限 y(x) 是方程的解.
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(4) 最后证明解的唯一性. 若方程有两个互异的解 φ(x), ψ(x)，记 u(x) = φ(x) − ψ(x)，

则有

|u(x)| =
∣∣∣∣∫ x

x0

f(t, φ(t))− f(t, ψ(t)) dt
∣∣∣∣

⩽ L

∫ x

x0

|φ(t)− ψ(t)| dt

= L

∫ x

x0

|u(t)| dt.

根据 Gronwall 不等式可得
|u(x)| ⩽ 0,

故 φ(x) = ψ(x).

注. 若 f(x, y) 不满足 Lipschitz 条件，则有 Picard 序列可能不收敛，解仍存在的情形.

注. f 仅连续但不满足 Lipschitz 条件时，解可能不唯一. 例如 y′ =
3

2
y

1
3 .

也可以利用压缩映像原理来证明解的唯一性. 下面不加证明地给出该原理，可参考泛函
分析相关教材.

定理 2 (压缩映像原理). 设 X 是完备的度量空间，T 是 X 上的压缩映射，那么 T 有且仅有

一个不动点，即 Tx = x 有且只有一个解.

下面我们介绍 Osgood 条件，它是一个比 Lipschitz 条件更弱的条件.

定义 2 (Osgood 条件). 设函数 f(x, y) 在区域 G 内连续，而且满足不等式

|f(x, y1)− f(x, y2)| ⩽ F (|y1 − y2|),

其中 F (r) > 0 是 r > 0 的连续函数，且∫ r1

0

dr
F (r)

= +∞,

则称 f(x, y) 在 G 内对 y 满足 Osgood 条件.

注. Lipschitz 条件是 Osgood 条件的特例，因为 F (r) = Lr 满足上述要求.


