
初等积分法

第一部分 恰当方程

定义 1 (恰当方程). 考虑对称形式的一阶微分方程

P (x, y) dx+Q(x, y) dy = 0. (1)

如果存在一个可微函数 Φ(x, y)，使得它的全微分为

dΦ(x, y) = P (x, y) dx+Q(x, y) dy,

则称方程 (1) 为恰当方程或全微分方程.

因此，当方程 (1) 为恰当方程时，可将它改写为全微分的形式

dΦ(x, y) = P (x, y) dx+Q(x, y) dy = 0,

从而

Φ(x, y) = C, (2)

其中 C 为任意常数，我们称 (2) 式为方程 (1) 的一个通积分或通解.
事实上，将任意常数 C 取定后，利用逆推法容易验证：由 (2) 式确定的隐函数 y = u(x)

（或 x = v(y)）就是方程 (1) 的一个解. 反之，若 y = u(x)（或 x = v(y)）是微分方程 (1) 的
一个解，则有

dΦ(x, y) = P (x, y) dx+Q(x, y) dy = 0,

其中 y = u(x)（或 x = v(y)）. 从而 y = u(x)（或 x = v(y)）满足2式，其中积分常数 C 取

决于解 y = u(x)（或 x = v(y)）的初值 (x0, y0)，亦即 C = Φ(x0, y0).
在一般情况下，我们需要解决的问题是：

(1) 如何判断一个给定的微分方程是否为恰当方程？

(2) 当它是恰当方程时，如何求出相应全微分的原函数？

(3) 当它不是恰当方程时，能否将它的求解问题转化为一个与之相关的恰当方程的求解问
题？

下面的定理对问题 (1) 和 (2) 给出了完满的解答. 至于问题 (3) 则是贯穿本章随后各节
的一个中心问题.
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定理 1. 设函数 P (x, y) 和 Q(x, y) 在区域 R = (α, β) × (γ.δ) 上连续，且有连续的一阶偏导

数 ∂P
∂y
与 ∂Q

∂x
，则微分方程

P (x, y) dx+Q(x, y) dy = 0

是恰当方程的充要条件为恒等式

∂

∂y
P (x, y) ≡ ∂

∂x
Q(x, y)

在 R 内成立. 且方程的通积分为∫ x

x0

P (x, y) dx+
∫ y

y0

Q(x0, y) dy = C,

或者 ∫ x

x0

P (x, y0) dx+
∫ y

y0

Q(x, y) dy = C,

其中 (x0, y0) 是 R 中任意取定的一点.

证明. 必要性： 方程为恰当方程，则存在 Φ(x, y) 使得

∂Φ

∂x
= P (x, y),

∂Φ

∂y
= Q(x, y).

则
∂P

∂y
=

∂2Φ

∂y ∂x
,

∂Q

∂x
=

∂2Φ

∂x ∂y
.

由偏导数的连续性假设，有
∂2Φ

∂y ∂x
=

∂2Φ

∂x ∂y
.

即
∂P

∂y
=
∂Q

∂x
.

充分性： 已知
∂P

∂y
=
∂Q

∂x
，我们要构造 Φ(x, y) 使

∂Φ

∂x
= P (x, y),

∂Φ

∂y
= Q(x, y).

令

Φ(x, y) =

∫ x

x0

P (x, y) dx+ ψ(y),

则显然
∂Φ

∂x
= P (x, y). 而

∂Φ

∂y
=

∂

∂y

∫ x

x0

P (x, y) dx+ ψ′(y)

=

∫ x

x0

∂P

∂y
dx+ ψ′(y)

=

∫ x

x0

∂Q

∂x
dx+ ψ′(y)

= Q(x, y)−Q(x0, y) + ψ′(y).
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令

ψ′(y) = Q(x0, y),

则有
∂Φ

∂y
= Q(x, y).

此时

ψ(y) =

∫ y

y0

Q(x0, y) dy,

所以有

Φ(x, y) =

∫ x

x0

P (x, y) dx+
∫ y

y0

Q(x0, y) dy.

同理，我们令

Φ(x, y) = ψ(x) +

∫ y

y0

Q(x, y) dy

可类似得到另一个函数

Φ(x, y) =

∫ x

x0

P (x, y0) dx+
∫ y

y0

Q(x, y) dy.

注. 求解恰当方程的关键是构造相应全微分的原函数 Φ(x, y), 这实际上就是场论中的位势问
题. 在单连通区域 R 上，条件

∂P

∂y
=
∂Q

∂x

保证了曲线积分

Φ(x, y) =

∫ (x,y)

(x0,y0)

P (x, y) dx+Q(x, y) dy

与积分的路径无关. 因此，上式确定了一个单值函数 Φ(x, y). 如果区域不是单连通的，那么
一般而言 Φ(x, y) 也许是多值的.

注. 事实上，这也可由 Green 公式简单推出.

命题 1. 若函数 p(x), q(x) 在区间 I 上连续可微，则方程

p(x) dx+ q(x) dy

是恰当的，其通解为 ∫ x

x0

p(x) dx+
∫ y

y0

q(x) dy = C.
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第二部分 变量分离方程

定义 2 (变量分离方程). 如果微分方程

P (x, y) dx+Q(x, y) dy = 0

中的函数 P (x, y) 和 Q(x, y) 均能表示为关于 x 的函数与关于 y 的函数的乘积，则称该微分

方程为变量分离方程.

由上述定义，我们可以将 P (x), Q(x) 分别写成

P (x) = X(x)Y1(y), Q(x) = X1(x)Y (y).

则变量分离方程可以写成

X(x)Y1(y) dx+X1(x)Y (y) dy = 0.

考虑特殊情形：P (x) = X(x) 和 Q(y) = Y (y)，则微分方程为

X(x) dx+ Y (y) dy = 0.

这显然是一个恰当方程，且其一个通解为∫
X(x) dx+

∫
Y (y) = C.

一般而言，变量分离方程不一定是恰当方程. 但它的名字揭示了：我们可以把变量进行
分离. 如果我们用因子 X1(x)Y1(y) 去除变量分离方程，就得到

X(x)

X1(x)
dx+ Y (y)

Y1(y)
dy = 0.

这是一个恰当方程，它的通解为∫
X(x)

X1(x)
dx+

∫
Y (y)

Y1(y)
dy = C.

当 X1(x)Y1(y) ̸= 0 时，上述方程和变量分离方程是同解的. 假设存在实数 a 使得

X1(a) = 0，则函数 x = a 也是变量分离方程的解，但不是分离变量后方程的解. 因此，在分
离变量后，要注意补上这些可能丢失的解. 即补上形如

x = ai (i = 1, 2, · · · )

和

y = bi (i = 1, 2, · · · )
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的特解. 其中 ai 是 Xi(x) = 0 的根，bi 是 Y1(y) = 0 的根.

第三部分 一阶线性方程

定义 3 (一阶线性方程). 形如
dy
dx + p(x)y = q(x)

的微分方程称为一阶线性方程. 其中 p(x) 和 q(x) 在区间 I = (a, b) 上连续.
当 q(x) ≡ 0 时，即得

dy
dx + p(x)y = 0.

此时我们称一阶线性方程是齐次的. 当 q(x) 不恒为零时，则称一阶线性方程为非齐次的.

注. 这里的“齐次”与“非齐次”指的是有关未知函数 y 的式 (y, y′, y′′, · · · ) 次数相同 (将不
含有关 y 的式看作 0 次的).

首先讨论齐次线性方程
dy
dx + p(x)y = 0

的解法.

解. 改写成对称形式，即
dy + p(x)y dx = 0,

这是一个分离变量方程. 当 y ̸= 0 时，方程两侧同除以 y，得

dy
y

+ p(x) = 0.

积分后，即得齐次线性方程的解

y = Ce−
∫
p(x)dx (C ̸= 0).

当 C = 0 时，对应于方程的特解 y = 0，因此，C 可以是任意常数，我们得到了齐次线性方

程的通解. ■

继续讨论非齐次线性方程的解法.

解. 同样地，我们改写成
dy + p(x)y dx = q(x) dx.

一般地，上述方程并非恰当方程. 但如果我们将方程两侧同乘以一个非零因子 µ(x) =

e
∫
p(x)dx，我们得到

e
∫
p(x)dx dy + e

∫
p(x)dxp(x)y dx = e

∫
p(x)dxq(x) dx,
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它是全微分的形式

d(e
∫
p(x)dxy) = d

∫
q(x)e

∫
p(x)dx dx.

直接积分，得到通积分

e
∫
p(x)dxy =

∫
q(x)e

∫
p(x)dx dx+ C.

得到通解

y = e−
∫
p(x)dx

(
C +

∫
q(x)e

∫
p(x)dx dx

)
,

其中 C 是任意常数.

注. 上述方法称为积分因子法. 因为我们用因子 µ(x) 乘方程的两侧后，他就转化为了一个全

微分方程，从而获得它的积分. 此外，我们还有常数变易法，将在后续学习中提及.

为确定起见，通常把一阶线性方程通解中的不定积分写成变上限的定积分，即

y = e−
∫ x
x0

p(t)dt
[
C +

∫ x

x0

q(s)e−
∫ s
x0

p(t)dt ds
]

(x0 ∈ I),

或

y = Ce−
∫ x
x0

p(t)dt
+

∫ x

x0

q(s)e−
∫ x
s p(t)dt ds.

利用这种形式，容易得到 Cauchy 初值问题

dy
dx + p(x)y = q(x), y(x0) = y0

的解为

y = y0e−
∫ x
x0

p(t)dt
+

∫ x

x0

q(s)e−
∫ x
s p(t)dt ds,

其中 p(x) 和 q(x) 在区间 I 上连续.
下面给出线性微分方程的一些性质.

性质 1. 齐次线性方程的解或者恒等于零，或者恒不等于零.

性质 2. 线性方程的解是整体存在的，即任一解都在 p(x) 和 q(x) 有定义且连续的整个区间

I 上存在.

性质 3. 齐次线性方程的任何解的线性组合仍是它的解；齐次线性方程的任一解与非齐次线
性方程的任一解之和是非齐次线性方程的解；非齐次线性方程的任意两解之差必是相应的齐

次线性方程的解.

性质 4. 非齐次线性方程的任一解与相应的齐次线性方程的通解之和构成非齐次线性方程的
通解.
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性质 5. 线性方程的 Cauchy 初值问题的解存在且唯一.

第四部分 初等变换法

下面介绍几个标准类型的微分方程，它们可以通过适当的初等变换转化为变量分离方程

或一阶线性方程.

定义 4 (齐次方程). 如果微分方程

P (x, y) dx+Q(x, y) dy = 0

中的函数 P (x, y) 和 Q(x, y) 都是 x 和 y 的同次（如 m 次）齐次函数，即

P (tx, ty) = tmP (x, y), Q(tx, ty) = tmQ(x, y),

则称方程为齐次方程.

注. 这与上节定义的齐次线性方程不是一回事.

对于齐次方程的解法，我们可以作变量替换. 令

y = ux.

其中 u 是新的未知函数，x 仍为自变量. 则P (x, y) = P (x, xu) = xmP (1, u),

Q(x, y) = Q(x, xu) = xmQ(1, u).

代入齐次方程

P (x, y) dx+Q(x, y) dy = 0,

得

xm [P (1, u) + uQ(1, u)] dx+ xm+1Q(1, u) du = 0,

这就将齐次方程转化为了变量分离方程.

注. 易知方程
P (x, y) dx+Q(x, y) dy = 0

为齐次方程的一个等价定义是，它可以化为如下形式：

dy
dx = Φ

(y
x

)
.
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注. 容易看出，x = 0 是我们化为的变量分离方程的一个特解. 但它未必是原方程的解. 这是
因为变换 y = ux 在 x = 0 时是不可逆的.

定义 5 (Bernoulli 方程). 形如
dy
dx + p(x)y = q(x)yn

的方程称为 Bernoulli 方程，其中 n 为常数且 n ̸= 0, 1.

对于 Bernoulli 方程的解法，我们先以 (1− n)y−n 乘方程两边，得到

(1− n)y−n dy
dx + (1− n)y1−np(x) = (1− n)q(x).

令 z = y1−n，有
dz
dx + (1− n)p(x)z = (1− n)q(x),

这就将其转化为了关于未知函数 z 的一阶线性方程.

定义 6 (Riccati 方程). 假如一阶微分方程

dy
dx = f(x, y)

的右端函数 f(x, y) 是一个关于 y 的二次多项式，即该方程可以写成

dy
dx = p(x)y2 + q(x)y + r(x),

的形式，其中 p(x), q(x) 和 r(x) 在区间 I 上连续且 p(x) 不恒为零，则称该方程为二次方程

或 Riccati 方程.

注. Riccati 方程是形式上最简单的非线性方程. 但一般而言，它不能用初等积分法求解.

定理 2. 设已知 Riccati 方程的一个特解 y = φ1(x)，则可用积分法求得它的通解.

证明. 对 Riccati 方程
dy
dx = p(x)y2 + q(x)y + r(x)

作变换 y = u+ φ1(x)，其中 u 是新的未知函数. 代入 Riccati 方程，得到

du
dx +

dφ1

dx = p(x)
[
u2 + 2φ1(x)u+ φ2

1(x)
]
+ q(x) [u+ φ1(x)] + r(x).

由于 y = φ1(x) 是 Riccati 方程的解，从上式消去相关的项后，就有

du
dx = [2p(x)φ1(x) + q(x)] u+ p(x)u2,

这是一个 Bernoulli 方程，可用积分法求出通解.
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定理 3. 设 Riccati 方程
dy
dx + ay2 = bxm,

其中 a, b,m 都是常数且 a ̸= 0. 又设 x ̸= 0 和 y ̸= 0，则当 m 为

0, −2,
−4k

2k + 1
,

−4k

2k − 1
(k = 1, 2, · · · )

时，方程可通过适当的变换化为变量分离方程.

证明. 不妨设 a = 1(否则作自变量变换 x = ax 即可)，我们考虑

dy
dx + y2 = bxm. (3)

当 m = 0 时，方程 (3) 是一个变量分离方程

dy
dx = b− y2.

当 m = −2 时，作变换 z = xy，其中 z 是新未知函数. 然后代入方程 (3)，得到

dz
dx =

b+ z − z2

x
.

这也是一个变量分离方程.

当 m =
−4k

2k + 1
时，作变换

x = ξ
1

m+1 , y =
b

m+ 1
η−1,

其中 ξ 和 η 分别为新的自变量和未知函数，则方程 (3) 变为

dη
dξ + η2 =

b

(m+ 1)2
ξn, (4)

其中 n =
−4k

2k − 1
. 再作变换

ξ =
1

t
, η = t− zt2,

其中 t 和 z 分别是新的自变量和未知函数，则方程 (4) 变为

dz
dt + z2 =

b

(m+ 1)2
tl, (5)

其中 l =
−4(k − 1)

2(k − 1) + 1
.
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上述方程与方程 (3)在形式上一样，只是右端自变量的指数从 m变为 l. 比较 m与 l 对

k 的依赖关系不难看出，只要将上述变换的过程重复 k 次，就能把方程 (3) 化为 m = 0 的情

形.

当 m =
−4k

2k − 1
时，原微分方程就是 (4) 的类型，因此可以把它化为微分方程 (5) 的形

式，从而可以化归到 m = 0 的情形. 至此证毕.

注. 此定理由 Daniel Bernoullli 在 1725 年得到. 这个定理指出，对于 Riccati 方程能用初等
积分法求解，m 的取值是充分的. 实际上，Liouville 在 1841 年进而证明了这个条件还是一
个必要条件.

注. Riccati 方程在历史上和近代都有重要应用. 例如，它曾用于证明 Bessel 方程的解不是初
等函数，另外它也出现在现代控制论和向量场分支理论的一些问题中.

Gronwall不等式在一阶常微分方程解的存在唯一性定理的证明过程中起到核心作用，该
不等式在 PDE 和 FPDE 中也有重要应用，它的作用是给出相关未知函数的上界估计.

定理 4 (Gronwall-Bellman 不等式). 设 K 为非负常数，f(t) 与 g(t) 为区间 [α, β] 上的非负

连续函数，且满足

f(t) ⩽ K +

∫ t

α

f(s)g(s) ds, α ⩽ t ⩽ β,

则有

f(t) ⩽ Ke
∫ t
α g(s)ds.

证明. 设
V (t) = K +

∫ t

α

f(s)g(s) ds, α ⩽ β,

则

V ′(t) = f(t)g(t) ⩽ g(t)V (t),

即 V ′(t)− g(t)V (t) ⩽ 0，两边同乘 e−
∫ t
α g(s)ds，得[

V (t)e−
∫ t
α g(s)ds

]′
⩽ 0.

由单调性得

V (t)e−
∫ t
α g(s)ds ⩽ V (α) = K.

故

f(t) ⩽ V (t) ⩽ Ke
∫ t
α g(s)ds.
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