
基本概念

定义 1 (常微分方程). 已知 F (z0, z1, · · · , zn+1) 为关于 z0, z1, · · · , zn+1 的已知函数，则关于

y = y(x) 的方程

F

(
x, y,

dy
dx,

d2y

dx2
, · · · , dny

dxn

)
= 0

或

F (x, y, y′, · · · , y(n)) = 0

称为常微分方程 (Ordinary Differential Equation, ODE). 称 x 为自变量，y 为未知函数，导

数实际出现的最高阶数 n 称为常微分方程的阶.

定义 2 (线性). 若 F 关于 z1, · · · , zn+1 为线性函数，则方程为线性的，否则称为非线性的.
非线性方程中，若 F 关于 zn+1 为线性函数，则方程为拟线性的.

注. 所有线性方程都是拟线性的，但不是拟线性的方程都是线性的，也就是说，线性是拟线
性的一种特殊情形.

定义 3 (自治). 若 ∂F

∂z0
≡ 0，则 ODE 是自治的.

注. 自治的方程是不含关于 x 的项的.

例 1. 下面的方程都是常微分方程：

y′′ = − 1

y2
, y′′ = ky, y′ = αy, y′ = x2 + y2,

d2y

dx2
= 1 + y2, y′′ + yy′ = x,

d2θ

dt2 + a2θ = 0.

例 2. 下面的方程都不是常微分方程：

y′(x) = y(y(x)), y′(x) = y(x− 1),

∫ x

0

y(t) dt+ y(x) = x.

对未知函数的个数进行推广，得到常微分方程组：

F (x,y,y′, · · · ,y(n)) = 0.

其中 F = (F1, F2, · · · , Fm)，y = (y1, y2, · · · , ym). 这里 m ⩾ 2，因为当 m = 1 时就是 ODE
的定义. 例如 m = 2 的情形，有F1(x, y1, y2, y

′
1, y

′
2, · · · , y

(n)
1 , y

(n)
2 ) = 0

F2(x, y1, y2, y
′
1, y

′
2, · · · , y

(n)
1 , y

(n)
2 ) = 0
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对自变量的个数进行推广，得到偏微分方程 (Partial Differential Equation, PDE). 例如

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
+ f = 0

是一阶线性偏微分方程. 其中 x, y 和 z 为自变量，f = f(x, y, z) 为未知函数.

定义 4 (解). 设函数 y = φ(x) 在区间 J 上连续，且有直到 n 阶的导数. 如果把 y = φ(x) 及

其相应的各阶导数代入 F (x, y, y′, · · · , y(n)) = 0，得到关于 x 的恒等式，即

F (x, φ(x), φ(x)′, · · · , φ(x)(n)) = 0

对一切 x 都成立，则称 y = φ(x) 为微分方程在 J 上的一个解.

例 3.
d2θ

dt2 + a2θ = 0.

解. 对任意的常数 C1, C2，

θ = C1 sin at+ C2 cos at

是 (−∞,+∞) 上的一个解.

微分方程的解可以包含一个或几个任意常数（与方程的阶数有关），而有的解不包含任

意常数. 为了确切表达任意常数的个数，我们定义通解和特解的概念.

定义 5 (通解与特解). 设 n 阶微分方程 F (x, y, y′, · · · , y(n)) = 0 的解

y = φ(x,C1, C2, · · · , Cn)

包含 n个独立的任意常数 C1, C2, · · · , Cn，则称它为通解.如果方程的解不包含任意常数，则
称它为特解.

注. 当任意常数一旦确定之后，通解也就变成了特解.

注. 这里所说的 n 个任意常数 C1, C2, · · · , Cn 是独立的，其含义是 Jacobi 行列式不为 0.

定解问题：我们简单介绍 Cauchy 初值条件以及边值条件.

定义 6 (Cauchy 初值条件). 对于函数 y，如果它满足：

1. 它是微分方程 F (x, y, y′, · · · , y(n)) = 0 的解；

2. 它在同一点 x0 处满足初始条件，取给定的值，即

y(x0) = y0, y′(x0) = y1, · · · , y(n−1)(x0) = yn−1.
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则称 y 满足 Cauchy 初值条件.

定义 7 (边值条件). 边值条件是在求解微分方程时使用的一类条件，它们指定了方程解在定
义域边界上的行为.

在常微分方程情况下，边值条件通常涉及以下两种类型：

1. Dirichlet 条件：直接指定了未知函数在边界上的值. 例如对于区间上的二阶 ODE，
Dirichlet 条件形如

y(a) = α, y(b) = β,

这里 α, β 是给定的常数.

2. Neumann 条件：指定了未知函数在边界上的导数值. 例如对于区间上的二阶 ODE，
Neumann 条件形如

y′(a) = γ, y′(b) = δ,

这里 γ, δ 也是给定的常数.

除此以外，还有其他类型的边值条件，如混合边值条件（同时包含函数值和导数值的条

件）和周期性边值条件（对于周期函数）.

定义 8 (积分曲线). 考虑一阶微分方程

dy
dx = f(x, y),

其中 f(x, y) 是平面区域 G 内的连续函数. 假设

y = φ(x) (x ∈ I)

是方程的解，（其中 I 是解的存在区间），则 y = φ(x) 在 Oxy 平面上是一条光滑的曲线 Γ，

称它为微分方程的积分曲线或解曲线.

由于 y = φ(x)，我们可以将微分方程改写为

φ′(x) = f(x, y),

亦即 Γ 在其上任一点 P0(x0, y0) 的切线斜率为 f(x0, y0)，则切线方程为

y = y0 + f(x0, y0)(x− x0),

即使我们并不知道积分曲线 Γ : y = φ(x) 是什么.
这样，在区域 G 内的每一点 P (x, y)，我们可以做一个以 f(P ) 为斜率的短小的直线段

l(P )，来标明积分曲线（如果存在）在该点的切线方向. 称 l(P ) 为微分方程在 P 点的线素，

称区域 G 联同上述全体线素为微分方程的线素场或方向场.
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由此可见，微分方程的任何积分曲线 Γ 与它的线素场是吻合的，即积分曲线所到之处

与线素均相切. 反之，如果一条连续可微的曲线 Λ 与微分方程的线素场吻合，则 Λ 是微分

方程的一条积分曲线.
在构造方程 dy

dx = f(x, y) 的线素场时，通常利用由关系式 f(x, y) = k 确定的曲线 Lk，

称它为线素场的等斜线. 显然，等斜线上各点线素的斜率都等于 k，因此，等斜线简化了线

素场逐点构造的方法.
这里需指出，一阶微分方程

dy
dx = f(x, y) 在许多情况下取如下形式：

dy
dx = −P (x, y)

Q(x, y)
,

其中，P (x, y) 和 Q(x, y) 是区域 G 内的连续函数.

当 Q(x0, y0) ̸= 0时，方程的右端函数
P (x, y)

Q(x, y)
在 (x0, y0)点的近旁是连续的. 因此，方程

的线素场在 (x0, y0) 点附近是完全确定的. 然而，如果 Q(x0, y0) = 0，那么线素场在 (x0, y0)

点就失去意义.
但是，只要 P (x0, y0) ̸= 0，我们就可以把方程改写为

dy
dx = −Q(x, y)

P (x, y)
,

这里需要把 x = x(y) 看作未知函数. 此时，微分方程的右端函数 Q(x, y)

P (x, y)
在 (x0, y0) 点近旁

是连续的. 因此它在那里的线素场也是确定的.
这样，当 P (x0, y0) 和 Q(x0, y0) 不同时为零时，我们可以在 (x0, y0) 近旁考虑上述两个

微分方程，虽然它们的未知函数略有不同. 此时，我们可以把它们统一写成下面的对称形式：

P (x, y) dx+Q(x, y) dy = 0.

只是当 P (x0, y0) = Q(x0, y0) = 0 时，上述的三个微分方程在 (x0, y0) 点都是不定式，因

此线素场在 (x0, y0) 点没有意义. 我们称这样的点为相应微分方程的奇异点.
虽然在奇异点微分方程是不定式，但是在积分曲线族的分布中奇异点是关键性的点. 之

后我们引入动力系统的概念，这里的奇异点将称为相应动力系统的奇点.


