
域的单扩张

定义 1 (素体). 只以自身为子体的体称为素体.

命题 1. 每个体中必包含唯一的素体作为其子体.

证明. 对任意体，它的全部子体的交即为素体，因为不包含更小的体了. 又反设有两个素体，
那么素体的交一定比这两个素体小，这与素体的定义矛盾，于是每个体包含的素体是唯一

的.

定理 1. 设 p 是素数，则 Zp 和 Q 都是素体. 对任意素体 M，或者 M ∼= Zp，或者 M ∼= Q.

证明. Zp 的子体作为加群，元素个数只能为 1 或 p，作为体，至少有元素 0 和 1，于是 Zp

的元素个数只能为 p，故子体只能为 Zp.
Q 的子体 F 至少含有 0 和 1，对四则运算封闭，则 Z ⊂ F，于是 Z 的分式域 Q ⊂ F，

故 F = Q.
下设 M 是一个素体，记 e 是 M 的幺元，则 Ze = {ne | n ∈ Z} 是 M 的子环，且是整

环. 作映射 π : Z → Ze, n 7→ ne，则 π 是满同态，于是由同态基本定理，

Z/ ker π ∼= Ze,

而 ker π 是 Z 的理想，Z 是 PID，故存在 p 使得 ker π = 〈p〉. 又因为 Ze 是整环，于是 〈p〉 是
素理想，p 为 0 或素数.

当 p 为素数时，Ze ∼= Zp 是域，则 Ze 是 M 的子体，而 M 是素体，故 M ∼= Ze ∼= Zp.
当 p = 0 时，Ze ∼= Z，则 Ze 的分式域 F ∼= Q. 由于 M 是体，Ze 是 M 的子环，于是

F ⊂ M . 而 M 是素体，于是 M = F ∼= Q.

注. 素体总是同构于域 Zp 或 Q，于是又称为素域.

定义 2 (特征). 若体 K 的素域与 Q 同构，则称 K 的特征为 0. 若体 K 的素域与 Zp 同构，

则称 K 的特征为 p. 记 K 的特征为 ChK.

定理 2. 设 K 是体，p 为素数，则

1. ChK = p ⇐⇒ pa = 0, ∀a ∈ K.

2. ChK = 0 ⇐⇒ na 6= 0, ∀n ∈ N+, a ∈ K∗.

证明. 设 K 的幺元为 e，K 中素域为 M .
1. 若 ChK = p，则 M ∼= Zp，于是 pe = 0，对任意 a ∈ K，有 pa = pea = 0. 反之，若

pa = 0, ∀a ∈ K，则 pe = 0，于是 M ∼= Zp，即 ChK = p.
2. 若 ChK = 0，则 Z ∼= Ze，故对任意 n ∈ N+，ne 6= 0，于是对任意 a ∈ K∗，na = nea 6= 0.

反之，对任意 n ∈ N+，a ∈ K∗，有 na 6= 0，则 ne 6= 0，于是 Z ∼= Ze，故 ChK = 0.
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注. 上述定理作为特征的等价条件，可以给出特征的另一定义，并推广到无零因子环上.

推论 1. 数域的特征都是 0.

证明. 由定理2的第 2 条可得. 或者因为任何数域都包含 Q，而 ChQ = 0 也可得.

定义 3 (扩域). 若 F 是域 K 的子域，则称 K 是 F 的扩域，记作 K/F .

定义 4. 设域扩张 K/F，S 是 K 的子集.K 中所有包含 F ∪ S 的域的交称为 F 上添加 S 所

得的域，记作 F (S).

注. 即包含 F ∪ S 的最小的域，也称为 F 和 S 生成的子域.

记

F [S] =

{ ∑
i1,i2,··· ,in⩽0

ai1i2···inα
i1
1 α

i2
2 · · ·αin

n

∣∣∣∣ ∀n ∈ N+, αj ∈ S, ai1i2···in ∈ F

}
.

有下述命题.

命题 2. F (S) 是 F [S] 的分式域.

证明. 记 f(α1, α2, · · · , αn) =
∑

ai1i2···inα
i1
1 α

i2
2 · · ·αin

n，则{
f(α1, α2, · · · , αn)

g(β1, β2, · · · , βm)

∣∣∣∣ f(α1, α2, · · · , αn), g(β1, β2, · · · , βm) ∈ F [S] , g(β1, β2, · · · , βm) 6= 0

}
是 F [S] 的分式域，且包含于 F (S). 又因为 F (S) 是所有包含 F ∪ S 的域的交，于是 F (S)

就是 F [S] 的分式域.

定理 3. 设域扩张 K/F，S ⊂ K，则

1. F (S) =
⋃
S′∈S

F (S ′)，其中 S ′ 取遍 S 的所有有限子集.

2. F (S1 ∪ S2) = F (S1)(S2).

证明. 1. S ′ ⊂ S，则 F (S ′) ⊂ F (S). 对任意 a ∈ F (S)，存在 f, g ∈ F [S] 使得 a =
f

g
. 而 f, g

均为有限和，故存在 S 的有限子集 S ′
0 使得 f, g ∈ F [S ′

0]，则

a =
f

g
∈ F (S ′

0) ⊂
⋃
S′⊂S

F (S ′).

F (S1∪S2)是含 F ∪(S1∪S2)的最小域，而 F (S1)(S2)是含 F ∪S1∪S2的域，于是 F (S1∪S2) ⊂
F (S1)(S2).

2. F (S1)(S2) 是含 (F ∪ S1) ∪ S2 的最小域，而 F (S1 ∪ S2) 是含 F ∪ S1 ∪ S2 的域，于是

F (S1)(S2) ⊂ F (S1 ∪ S2). 故 F (S1 ∪ S2) = F (S1)(S2).
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推论 2. F (S1)(S2) = F (S2)(S1).

推论 3. F (α1, α2, · · · , αn) = F (α1)(α2) · · · (αn).

至此，把在域上添加有限集合转化为添加有限个元素，进一步转化为添加单个元素的问

题.

定义 5 (域的单扩张). 设域扩张 K/F . 若存在 α ∈ K 使得 K = F (α)，则称 K 是 F 的单扩

张或单扩域. 若 α 是 F 上的代数元，则称 K = F (α) 是 F 的单代数扩张，若 α 是 F 上的

超越元，则称 K = F (α) 是 F 的单超越扩张.

单超越扩张的构造：由于 α 是超越元，于是 F [α] 是 F 上一元多项式环，在同构意义

下唯一，于是它的分式域 F (α) 在同构意义下唯一.
单代数扩张的构造有下述定理.

定理 4. 域 F 的单代数扩张 F (α) = F [α].

证明. 嵌入映射 i : F → K 为同态映射. 对任意 α ∈ K，有 η : F [x] → K 使得 η(x) = α. 于
是 η(F [x]) = F [α]. 即 η : F [x] → F [α] 是满同态. 由同态基本定理，

F [x] / ker η ∼= F [α] .

由于 F [x] 是域 F 上的多项式环，因而是主理想整环. 而 ker η 是 F [x] 的理想，故存在

p(x) ∈ F [x] 使得 ker η = 〈p(x)〉.
又因为 F [α]是整环，于是 〈p(x)〉是素理想，p(x)为不可约多项式.而 F [x]是主理想整

环，于是 〈p(x)〉是极大理想，因而 F [α]是域.而 F (α)是 F [α]的分式域，故 F (α) = F [α].

注. F [α] 的形式为

F [α] =

{
f(α) =

k∑
i=0

aiα
i

∣∣∣∣ ai ∈ F, ∀k ∈ N

}
,

于是 F (α) 中的元素更清晰了.

注. p(x) 把 α 化零，即 p(α) = 0. 不妨设 p(x) 首一，则这样的首一不可约多项式 p(x) 被 α

唯一确定，称为 α 的极小多项式，即如下定义.

定义 6 (极小多项式). 设 K 是 F 的扩域，α ∈ K 且为 F 上的代数元，F [x] 中以 α 为根的

首一不可约多项式称为 α 在 F 上的极小多项式，记作 Irr(α, F ). 称 deg(Irr(α, F )) 为 α 在

F 上的次数，记作 deg(α, F ).

还可以从线性空间的角度看单代数扩张.

定理 5. 设 F (α) 是域 F 的单代数扩张，又若 deg(α, F ) = n，则 F (α) 是 F 上的 n 维线性

空间，且 1, α, α2, · · · , αn−1 是一组基.
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证明. 由线性空间定义可以验证 F (α) 是 F 上的线性空间. 下证 1, α, · · · , αn−1 是一组基.

反设 1, α, · · · , αn−1 线性相关，则有不全为零的 a0, a1, · · · , an−1 使
n−1∑
i=0

aiα
i = 0，这与

deg(α, F ) = n 矛盾.
由 deg(α, F ) = n，对任意 f(x) ∈ F [x]，存在 q(x), r(x) ∈ F [x] 使得

f(x) = q(x)Irr(α, F ) + r(x), deg r(x) < deg(Irr(α, F )) = n.

于是 f(α) = r(α)，可被 1, α, · · · , αn−1 线性表出.
因而 1, α, · · · , αn−1 是 F (α) 的一组基，故 F (α) 的维数为 n.

注. 上述定理把 F 的代数单扩张与线性空间联系，元素为
n−1∑
i=0

aiα
i，把求和的项数限制住.

注. F (α) 分别看作线性空间和域时，它们的加法是一致的，但乘法有所不同. 线性空间中的
乘法是系数域 F 中的元素与 F (α) 中元素相乘，乘积的次数仍小于 n. 而域中的乘法是 F (α)

中的两个元素
n−1∑
i=0

aiα
i 与

n−1∑
i=0

biα
i 相乘，乘积的次数不一定仍小于 n，这时可以与上述证明

中类似作多项式的带余除法，以 Irr(α, F ) 为除式，得到 r(x) 再代入 α，使得乘积与次数小

于 n 的 r(α) 相等.

定义 7 (等价扩张). 设 K1, K2 都是 F 的扩域，且存在同构 η : K1 → K2. 若 η
∣∣
F
= idF，则

称 K1 与 K2 是 F -等价扩张，称 η 为 K1 到 K2 的 F -同构，若 K1 = K2 = K，则称 η 为

K 的 F -自同构.

命题 3. 设 F (α) 和 F (β) 都是 F 的单超越扩张，则 F (α) 与 F (β) 是 F -等价扩张.

证明. F (α)与 F (β)都是 F 上一元多项式环的分式域，因此 F (α) ∼= F (β)且 η
∣∣
F
= idF .

命题 4. 设 F (α)和 F (β)都是 F 的单代数扩张且 Irr(α, F ) = Irr(β, F )，则 F (α)与 F (β)是

F -等价扩张.

证明. 设 n = deg(α, F ) = deg(β, F )，作映射

η : F (α) → F (β),
n−1∑
i=0

aiα
i 7→

n−1∑
i=0

aiβ
i,

则由同一域上相同维数的线性空间同构可知 η 是双射且保持域的加法. 对于乘法，存在
q(x), r(x) ∈ F [x] 使得(

n−1∑
i=0

aix
i

)(
n−1∑
i=0

bix
i

)
= q(x)Irr(α, F ) + r(x), deg r(x) < n.
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于是 (
n−1∑
i=0

aiα
i

)(
n−1∑
i=0

biα
i

)
= r(α).

有

η(r(α)) =
n−1∑
i=0

ciβ
i = q(β)Irr(β, F ) + r(β) =

(
n−1∑
i=0

aiβ
i

)(
n−1∑
i=0

biβ
i

)
.

故 η 是域同构. 对任意 a0 ∈ F，有

η(a0) = η

(
n−1∑
i=0

aiα
i

)
=

n−1∑
i=0

aiβ
i = a0β

0 = a0.

于是 η
∣∣
F
= idF，故 F (α) 与 F (β) 是 F -等价扩张.

注. 单代数扩张 F (α) 在 F -等价扩张的意义下，完全由 Irr(α, F ) 决定.

例 1. F -等价的两个单代数扩张 F (α)和 F (β)，不一定有 Irr(α, F ) = Irr(β, F ).例如 R(
√
−1) =

R(1 +
√
−1) = C，但 Irr(

√
−1,R) = x2 + 1，Irr(1 +

√
−1,R) = x2 − 2x+ 2，显然不等. 但它

们的次数是相同的.

定义 8 (共轭子域). 设 K1 和 K2 是 F -等价扩张，且都是 K 的子域，则称 K1 和 K2 是 K

中对 F 的共轭子域.

定义 9 (共轭元素). 设域扩张 K/F，α, β ∈ K，Irr(α, F ) = Irr(β, F )，则称 α 与 β 是对 F

的共轭元素.


