
可分多项式与完备域

定义 1 (形式微商). 设 f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F [x]，称

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1

为 f(x) 的形式微商.

注. 这里只是形式的定义，没有用到极限，但很多性质与分析中相同.

注. 不一定有 deg f ′(x) = deg f(x)− 1，因为 nan 可能为零. 当 ChF = 0 时，上式成立.

性质 1. 对任意 a ∈ F，有 a′ = 0，但反之不一定，只有当 ChF = 0 时条件充要.

例 1. 设 p为素数，f(x) = xp−α ∈ Zp(α) [x]，其中 α是 Zp上的超越元，则 f ′(x) = pxp−1 = 0.

性质 2. x′ = 1.

性质 3. (cf(x))′ = cf ′(x), ∀c ∈ F .

性质 4. (f(x) + g(x))′ = f ′(x) + g′(x).

性质 5. (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

性质 6. deg f ′(x) ⩽ deg f(x).

引理 1. 设 K 是 f(x) ∈ F [x] 的分裂域，α ∈ K 是 f(x) 的一个 k 重根，则

1. 当 ChF ∤ k 时，α 是 f ′(x) 的 k − 1 重根.

2. 当 ChF | k 时，α 至少是 f ′(x) 的 k 重根.

证明. 在 K [x] 中，记 f(x) = (x− α)kg(x)，g(α) 6= 0. 则由微商的乘法法则，有

f ′(x) = (x− α)k−1 [kg(x) + (x− α)g′(x)] .

当 ChF ∤ k 时，kg(α) 6= 0，故 α 是 f ′(x) 的 k − 1 重根.
当 ChF | k 时，kg(α) = 0 且 (α− α)g′(α) = 0，故 α 至少是 f ′(x) 的 k 重根.

注. α 是 f(x) 的单根能推出 α 不是 f ′(x) 的根，因为任何特征都不能整除 1. 那反过来呢？

注. 设 f(x) 在分裂域中的所有根 αi, i = 1, 2, · · · , s 分别是 f(x) 的 ki 重根，且 ChF | ki，
则由上述引理，αi 至少是 f ′(α) 的 ki 重根，这与“deg f ′(x) ⩽ deg f(x)”是否矛盾？
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定理 1. 设 K 是 f(x) ∈ F [x] 的分裂域，则 f(x) 在 K 中无重根当且仅当 (f(x), f ′(x)) = 1.

证明. f(x) 有重根 ⇐⇒ f(x) 与 f ′(x) 有公根 ⇐⇒ f(x) 与 f ′(x) 有次数大于等于 1 的公

因式 ⇐⇒ (f(x), f ′(x)) 6= 1.

定理 2. 设不可约多项式 p(x) ∈ F [x]，则 p(x) 在其分裂域 K 中无重根当且仅当 p′(x) 6= 0.

证明. p(x) 无重根 ⇐⇒ (p(x), p′(x)) = 1 ⇐⇒ (p(x), p′(x)) 6= p(x) ⇐⇒ p(x) ∤ p′(x) ⇐⇒
p′(x) 6= 0.

例 2. 设 p是素数，α 是 Zp 上的超越元.多项式 xp −α ∈ Zp(α) [x]有重根，因为 (xp −α)′ =

pxp−1 = 0.

推论 1. 若 ChF = 0，则 F [x] 中任一不可约多项式在分裂域中都无重根.

证明. 因为 deg p′(x) = deg p(x)− 1 ⩾ 0，故 p′(x) 6= 0，即 p(x) 无重根.

定义 2 (可分多项式). 设 F 是域，若 f(x) ∈ F [x] 的每个不可约因式在分裂域中都无重根，

则称 f(x) 是 F 上的可分多项式.

注. 可分多项式与基域 F 有关，因为在不同的基域下，不可约因式会改变.

由上述定义可以简化一些命题的叙述.

命题 1. 设 f(x) ∈ F [x] 的分裂域为 E，则 E 的 F -自同构的个数不超过 [E : F ]，等号成立

当且仅当 f(x) 是 F 上的可分多项式.

命题 2. 不可约多项式 p(x) ∈ F [x] 在 F 上可分当且仅当 p′(x) 6= 0.

命题 3. 若 ChF = 0，则 F [x] 中任一多项式均可分.

引理 2. 设 ChF = p 6= 0，f(x) ∈ F [x] 不可约，则 f(x) 在 F 上不可分当且仅当存在不可约

多项式 g(x) ∈ F [x] 使 f(x) = g(xp).

证明.“⇐”: 记 g(x) =
n∑

i=0

aix
i，则 f(x) =

n∑
i=0

ai(x
p)i =

n∑
i=0

aix
pi，则 f ′(x) =

n∑
i=0

piaix
pi−1 =

0. 由于 f(x) 不可约，故 f(x) 不可分.

”⇒”: 记 f(x) =
n∑

j=0

ajx
j，因为 f(x) 不可分不可约，故

f ′(x) =
n∑

j=0

jajx
j−1 = 0 ⇒ jaj = 0.
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若 aj 6= 0，则 p | j，即只有 a0, ap, a2p, · · · , amp可能不为零，其中m满足 n = mp+r, 0 ⩽ r < p.
所以

f(x) =
m∑
i=0

aipx
ip =

m∑
i=0

aip(x
p)i.

令 g(x) =
m∑
i=0

aipx
i，则 f(x) = g(xp).

反设 g(x) 可约，有 g(x) = g1(x)g2(x)，则 f(x) = g(xp) = g1(x
p)g2(x

p)，这与 f(x) 不可

约矛盾，故 g(x) 不可约.

定理 3. 设 ChF = p 6= 0，f(x) 是 F [x] 中不可分不可约多项式，K 是 f(x) ∈ F [x] 的分裂

域，则在 K [x] 中，

f(x) = c(x− α1)
pe(x− α2)

pe · · · (x− αr)
pe , αi 6= αj, ∀i 6= j, e ∈ N.

且有 F [x] 中可分的不可约多项式

h(x) = c(x− αpe)(x− αpe

2 ) · · · (x− αpe

r )

使 f(x) = h(xpe).

证明. 因为 f(x) 不可分，由引理2，存在不可约多项式 g1(x) ∈ F [x] 使得 f(x) = g1(x
p).

若 g1(x) 可分，取 h(x) = g1(x). 否则，由引理2，存在不可约多项式 g2(x) ∈ F [x] 使

g(x) = g2(x
p)，则 f(x) = g1(x

p) = g2(x
p2). 以此类推，由于

deg f(x) > deg g1(x) > deg g2(x) > · · · ,

经有限步后总能得到可分的不可约多项式 ge(x) 使 f(x) = ge(x
pe)，取 h(x) = ge(x).

因为 h(x) 可分，故在其分裂域中，

h(x) = c(x− β1)(x− β2) · · · (x− βr), βi 6= βj, ∀i 6= j.

于是 f(x) = c(xpe − β1)(x
pe − β2) · · · (xpe − βr).

记 αi 是 xpe − βi 在分裂域中的一个根，则 αpe

i − βi = 0，βi = αpe

i . 于是

xpe − βi = xpe − αpe

i = (x− α)p
e

,

故

f(x) = c(x− α1)
pe(x− α2)

pe · · · (x− αr)
pe , e ∈ N.

对任意 i 6= j，若 αi = αj，则 αpe

i = αpe

j ，与 βi 6= βj 矛盾.

注. f(x) = c(x− α1)
pe(x− α2)

pe · · · (x− αr)
pe = c [(x− α1)(x− α2) · · · (x− αr)]

pe.
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注. 称 f(x) 不同根的个数 r 为 f(x) 的简约次数，记为 redf(x). 有 redf(x) = degh(x).

注. deg f(x) = redf(x) · pe，即 pe =
deg f(x)
redf(x) .

注. 不可约多项式 f(x) ∈ F [x] 可分当且仅当 deg f(x) = redf(x).

定义 3 (完备域). 设 F 是域，若 F [x] 中任一多项式都是可分多项式，则称 F 为完备域.

注. 由可分多项式的定义，完备域只需任一不可约多项式可分即可. 由推论1，特征为 0 的域

都是完备域.

定理 4. 设 F 是域，ChF = p 6= 0，则 F 是完备域的充要条件是

F p = F, F p = {ap | a ∈ F} .

证明. ”⇐”: 反设 F [x]中存在不可分不可约多项式 f(x)，由引理2，存在不可约多项式 g(x) ∈

F [x] 使 f(x) = g(xp). 记 g(x) =
n∑

i=0

aix
i，bpi = ai，则

f(x) =
n∑

i=0

ai(x
p)i =

n∑
i=0

bpix
pi =

(
n∑

i=0

bix
i

)p

.

这与 f(x) 不可约矛盾.
“⇒”: 即证对任意 b ∈ F，存在 a ∈ F 使得 b = ap. 令 f(x) = xp − b ∈ F [x]，则

f ′(x) = pxp−1 = 0，f(x) 有重根，而 F 是完备域，故 f(x) 在 F 中可约.
设 f(x) = g(x)h(x)，0 < deg g(x), degh(x) < p，g(x), h(x) ∈ F [x].记 θ 是 f(x) = xp− b

在扩域中的一个根，则 θp − b = 0，b = θp. 于是

f(x) = xp − b = xp − θp = (x− θ)p.

故在 f(x) ∈ F [x] 的分裂域中，记 deg g(x) = r，则 g(x) = (x− θ)r ∈ F [x]，故 θr ∈ F .
又 θp = b ∈ F，p 是素数，于是 (r, p) = 1. 存在 u, v 使得 ur + vp = 1. 于是

θ = θur+vp = (θr)u(θp)v ∈ F.

令 a = θ 便完成证明.

注. 定理的条件即为 F 中任一元素可在自身 F 中开 p 次方.

注. 事实上，特征为素数 p 的域 F 上，若 a ∈ F 能开 p 次方，则 p 次方根是唯一的. 因为
对 bp1 = bp2 = a，有 bp1 − bp2 = (b1 − b2)

p = 0，于是 b1 = b2.

定理 5. 有限域是完备域.
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证明. 不妨设 ChF = p 6= 0，令 σ : F → F, a 7→ ap，可以证明 σ 是良定义的且是单射. 而
F 有限，故 σ 也是满射. 故 σ(F ) = F，即 F p = F，故 F 是完备域.

注. 事实上，对任意 a, b ∈ F，有

σ(a+ b) = (a+ b)p = ap + bp = σ(a) + σ(b),

σ(ab) = (ab)p = apbp = σ(a)σ(b),

于是 σ 是 F -自同构，称为 Frobenius 自同构.

定理 6. 完备域 F 的代数扩张 K 是完备域.

证明. 不妨设 ChF = p 6= 0，即证对任意 α ∈ K，存在 β ∈ K 使得 βp = α. 令 σ : K →
K, a 7→ ap，可以证明 σ 是单同态. 记 E = F (α)，则 σ

∣∣
E
: E → σ(E) 是同构. 有

E ∼= σ(E) = Ep ⊂ E.

下证 σ(E) = E. 因为

σ(E) = σ(F (α)) = σ(F )(σ(α)) = F p(σ(α)) = F (σ(α)),

于是 F ⊂ σ(E) ⊂ E. 由于 α 是 F 上的代数元，故 [E : F ] 的有限扩张. 有

[E : F ] = [E : σ(E)] [σ(E) : F ] .

又 E ∼= σ(E)，故 [E : F ] = [σ(E) : F ]，于是 [E : σ(E)] = 1，故 E = σ(E).


