
可分扩张

定义 1 (可分元素). 设域扩张 K/F，α ∈ K 是 F 上的代数元. 若 Irr(α, F ) 可分，则称 α 是

F 上的可分元素，否则称为 F 的不可分元素.

定义 2 (可分扩张). 设域扩张 K/F 是代数扩张，若 K 中任一元素都是 F 上的可分元素，则

称 K 是 F 的可分扩张，否则称为 F 的不可分扩张.

命题 1. 完备域的代数扩张是可分扩张.

证明. 由定义即得.

推论 1. 有限域的代数扩张是可分扩张.

推论 2. 特征为 0 的域的代数扩张是可分扩张.

命题 2. 设域扩张 K/F 是可分扩张，E 是中间域，则 E/F，K/E 都是可分扩张.

证明. 因为 K/F 是可分扩张，故 K/F 是代数扩张，则 E/F，F/E 都是代数扩张. 对任意
α ∈ E ⊂ K，Irr(α, F ) 可分，故 E/F 是可分扩张.
对任意 β ∈ K，Irr(β, F ) 可分，且 Irr(β,E) | Irr(β, F )，则 Irr(β,E) 可分，故 K/E 是

可分扩张.

命题 3. 存在不可分的代数扩张.

证明. 设 p 是素数，α 是 Zp 上的超越元，则 xp − α ∈ Zp(α) [x] 不可约，设 xp − α 在扩域

上的一个根为 θ，则 xp − α = xp − θp = (x− θ)p，有重根，则 xp − α 不可分.

定理 1. 设 K 是可分多项式 f(x) ∈ F [x] 的分裂域，则 K 是 F 的可分扩张.

证明. 因为 K 是 f(x) ∈ F [x] 的分裂域，故 K/F 是有限扩张，进而是代数扩张. 又 f(x) 是

可分多项式，故 K 的不同 F -自同构的个数为 [K : F ]. 因为 K 是 f(x) ∈ F [x] 的分裂域，故

K/F 是正规扩张. 对任意 α ∈ K，因为 f(x) 的分裂域是 K，因此 f(x) 的根都在 K 中，又

因为 K/F 是正规扩张，所以 Irr(α, F )f(x) 的根都在 K 中，Irr(α, F )f(x) ∈ F [x] 的分裂域

仍是 K，又因为 K 的不同 F -自同构的个数为 [K : F ]，故 Irr(α, F )f(x) 是 F 上的可分多项

式，则 Irr(α, F ) 是 F 上的可分多项式. 由 α 的任意性，K/F 是可分扩张.

推论 3. 设 α1, α2, · · · , αn 是 F 上可分元素，则 F (α1, α2, · · · , αn) 是 F 的可分扩张.

证明. 因为 α1, α2, · · · , αn 是 F 上可分元素，则 Irr(α1, F ), Irr(α2, F ), · · · , Irr(αn, F ) 是 F 上

的可分多项式，则
n∏

i=1

Irr(αi, F ) 也是 F 上的可分多项式. 设它的分裂域为 K，则由定理1，

域扩张 K/F 是可分扩张. 又 F ⊂ F (α1, α2, · · · , αn) ⊂ K，故 F (α1, α2, · · · , αn) 是 F 的可分

扩张.
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定义 3 (本原元素). 设域扩张 K/F 是有限扩张，若存在 θ ∈ K 使得 K = F (θ)，则称 θ 是

K 对 F 的本原元素.

定理 2. 设 α1, α2, · · · , αn 是域 F 上的可分元素，则 K = F (α1, α2, · · · , αn) 中有本原元素 θ

使 K = F (θ).

证明. 只需证 n = 2 时即可.
当 F 是有限域时，K = F (α, β) 也是有限域，于是 K 中非零元关于乘法作成的子群

(K∗, ·) 为循环群，存在 θ ∈ K∗ 使得 K∗ = ⟨θ⟩，故 K = F (θ).
当 F 是无限域时，设 α, β 是 F 上的可分元素，记 θ = β+cα，c ∈ F，则 F (θ) ⊂ F (α, β).

记 p1(x) = Irr(α, F )，p2(x) = Irr(β, F )，在 p1(x)p2(x) ∈ F [x] 的分裂域中，因为 α, β 是域

F 上的可分元素，于是 p1(x), p2(x) 可以分解为互不相同的一次因式

p1(x) = (x− α1)(x− α2) · · · (x− αt),

p2(x) = (x− β1)(x− β2) · · · (x− βs),

不妨设 α1 = α，β1 = β.
由于

p2(θ − cα) = p2(β) = 0,

于是 α 是 p2(θ − cx) 的根. 记

f(x) = p2(θ − cx) = (θ − cx− β1)(θ − cx− β2) · · · (θ − cx− βs) ∈ F (θ) [x] .

当 c ̸= βj − β

α− αi

(i = 2, 3, · · · , t, j = 1, 2, · · · , s) 时，有

β + cα− cαi − βj = θ − cαi − βj ̸= 0,

因为 F 是无限域，于是总可以找到这样的 c，此时 (f(x), Irr(α, F )) = x− α，于是 x− α ∈
F (θ) [x]，α ∈ F (θ). 则 β = θ − cα ∈ F (θ)，故 F (α, β) ⊂ F (θ).

注. 定理事实上给出了本原元素的求法，但是求解困难. 对于无限域，可以采用先猜后证的
思路. 即任取 c0，令 θ = β + c0α，只要得出 α ∈ F (θ) 或 β ∈ F (θ) 即可.

定理 3. 一个域的有限可分扩张一定是单代数扩张.

证明. 设有限可分扩张 K/F，K = F (α1, α2, · · · , αn)，其中 α1, α2, · · · , αn 是可分元素，则

由定理2可知存在 θ 使得 K = F (θ).

下面说明可分扩张的可分扩张仍为可分扩张，先给出一个引理.

引理 1. 设 F 是域，ChF = p ̸= 0，α 是 F 上代数元，则 F (α) 是 F 的可分扩张当且仅当

F (α) = F (αp).
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证明.“⇒”: 显然 F (αp) ⊂ F (α). 又因为 F (α) 是 F 的可分扩张，所以 α 是 F 上的可分元

素，进而是 F (αp) 上的可分元素. 于是 Irr(α, F (αp)) 无重根. 而 xp − αp ∈ F (α) [x] 是 α 的

零化多项式，于是

Irr(α, F (αp)) | xp − αp = (x− α)p.

故 Irr(α, F (αp)) = x− α，则 α ∈ F (αp)，故 F (α) ⊂ F (αp).
“⇐”: 反设 α 是 F 上的不可分元素，则 Irr(α, F ) 是不可分的不可约多项式，存在不可

约多项式 g(x) ∈ F [x] 使得 Irr(α, F ) = g(xp)，将 α 代入，有 g(αp) = 0. 把 αp 看作一个整

体，则 g(x)把 αp 化零且首一不可约，故 Irr(αp, F ) = g(x).于是 deg(α, F ) > deg(αp, F )，即

[F (α) : F ] > [F (αp) : F ]. 这与 F (α) = F (αp) 矛盾.

定理 4. 设域扩张 K/E，E/F 是可分扩张，则域扩张 K/F 也是可分扩张.

证明. 不妨设 ChF = p ̸= 0. 由 K/E，E/F 都是可分扩张，所以都是代数扩张，则 K/F 也

是代数扩张. 因为 K/E 可分，故对任意 α ∈ K，α 是 E 上可分元素，则

Irr(α,E) := xn + an−1x
n−1 + · · ·+ a1x+ a0

是可分多项式，其中 a0, a1, · · · , an−1 ∈ E. 取 F (a0, a1, · · · , an−1)，则

Irr(α,E) ∈ F (a0, a1, · · · , an−1) [x]

无重根. 又因为 E/F 可分，故 a0, a1, · · · , an−1 都是 F 上可分元，故存在本原元素 θ ∈
F (a0, a1, · · · , an−1) 使得 F (θ) = F (a0, a1, · · · , an−1).

因为

Irr(θ, F (α))
∣∣∣ Irr(θ, F (αp)),

而

(Irr(θ, F (α)))p ∈ F p(αp) = F (αp),

故

Irr(θ, F (αp))
∣∣∣ (Irr(θ, F (α)))p .

因为 θ 是 F 上可分元素，故 θ 是 F (αp) 上可分元素，Irr(θ, F (αp)) 无重根，则

Irr(θ, F (αp))
∣∣∣ Irr(θ, F (α)).

故 Irr(θ, F (α)) = Irr(θ, F (αp))，于是

[F (θ, αp) : F (αp)] = [F (θ, α) : F (α)] .

因为 α 是 F (θ) 上的可分元，由引理1有 F (θ, α) = F (θ, αp). 于是

[F (θ, α) : F (α)] [F (α) : F (αp)] = [F (θ, α) : F (αp)] = [F (θ, αp) : F (αp)] = [F (θ, α) : F (α)] .
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比较左右两边即得

[F (θ, α) : F (α)] = 1,

因而 F (α) = F (αp)，由引理1即得 F (α) 是 F 的可分扩张，即 α 是 F 上的可分元素，而由

α 的任意性可得 K/F 是可分扩张.


