
多项式环

定义 1 (生成的子环). 设 R̃ 是交换幺环，R < R̃ 且 1 ∈ R. 设 u ∈ R̃，称包含 R 与 u 的最小

子环为 R 与 u 生成的子环，记作 R [u]，则对任意 n ∈ N，有

R [u] = {a0 + a1u+ · · ·+ anun | ai ∈ R} ,

也称 R [u] 为 R 上添加 u 生成的子环.

定义 2 (代数元). 如果 R 中存在有限多个元素 a0, a1, · · · , an 且 an 6= 0 使得

a0 + a1u+ · · ·+ anu
n = 0,

则称 u 是 R 上的代数元. 称满足上述条件的最小的 n 为代数元的次数，记作 deg(u,R).

定义 3 (超越元). 若对任意 a0, a1, · · · , an ∈ R，a0+a1u+· · ·+anu
n = 0当且仅当 a0, a1, · · · , an

全为零，则称 u 是 R 上的超越元或不定元.

注. 不是代数元的元素就是超越元.

定义 4 (一元多项式环). 当 u 是交换幺环 R 上的超越元时，称 R [u] 为一元多项式环，R [u]

中的元素称为一元多项式.

定义 5. 设多项式 f(u) = a0 + a1u+ · · ·+ anu
n ∈ R [u]，若 an 6= 0，则称 n 为 f(u) 的次数，

记作 deg f(u). 称 aix
i 为 f(x) 的第 i 项，ai 称为第 i 项的系数，a0 称为常数项，anx

n 称为

首项.

注. 规定非零元 a0 ∈ R 作为多项式的次数为 0，零元 0 的次数为 −∞.

性质 1. deg f(x) = 0 ⇐⇒ f(x) ∈ R∗.

性质 2. deg(f(x) + g(x)) ⩽ max{deg f(x), deg g(x)}.

定义 6 (首一多项式). 首项系数为 1 的非零多项式称为首一多项式.

性质 3. 首一多项式的乘积仍为首一多项式.

定理 1. 交换幺环上的一元多项式环存在.

证明. 令 R̃ = {(a0, a1, · · · ) | ai ∈ R且仅有有限个ai 6= 0}. 定义加法与乘法如下.

(a0, a1, · · · ) + (b0, b1, · · · ) = (a0 + b0, a1 + b1, · · · ),
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(a0, a1, · · · ) · (b0, b1, · · · ) = (c0, c1, · · · ),

其中，

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =
∑
i+j=n

aibj.

由于 (a1, a2, · · · ), (b1, b2, · · · ) ∈ R̃，于是存在 m，当 n > m时，an = bn = 0.于是 an+ bn = 0，

n > 2m 时，cn =
∑
i+j=n

aibj = 0. 于是上述加法与乘法是良定义的.

可以证明 R̃ 对加法作成 Abel 群，零元为 (0, 0, · · · )，−(a1, a2, · · · ) = (−a1,−a2, · · · ).
R̃ 对乘法可换且幺元为 (1, 0, 0, · · · ). 对任意 f = (a0, a1, · · · )，g = (b0, b1, · · · )，h =

(c0, c1, · · · )，(fg)h 的第 k 个元素为

∑
s+r=k

(∑
i+j=s

aibj

)
cr =

∑
i+j+r=k

aibjcr =
∑
i+t=k

ai

(∑
j+r=t

bjcr

)

这也是 f(gh) 的第 k 个元素，于是 R̃ 对乘法是结合的，故 R̃ 为乘法幺半群.
而 (an + bn)cn = ancn + bncn，于是分配律满足，R̃ 是交换幺环.
令 R0 = (a0, 0, 0, · · · )，其中 a0 ∈ R. 可以验证 φ : R0 → R, (a0, 0, · · · ) 7→ a0 是同构，于

是可将 R 看作 R̃ 的子环，且幺元就是 R̃ 的幺元.
令 u = (0, 1, 0, · · · )，则有

uk = (0, · · · , 0︸ ︷︷ ︸
k

, 1, 0, · · · ),

aku
k = (0, · · · , 0︸ ︷︷ ︸

k

, ak, 0, · · · ), ak ∈ R = R0.

若 f = (a0, a1, · · · ) ∈ R̃，则存在 n 使得 an+1 = an+2 = · · · = 0，于是

f = a0 + a1u+ · · ·+ anu
n,

故 R̃ = R0 [u] = R [u]. 若
a0 + a1u+ · · ·+ anu

n = 0,

则 (a0, a1, · · · , an, 0, · · · ) = (0, · · · , 0)，于是 a0 = a1 = · · · = an = 0. 于是 u 是 R 上的超越

元，故 R̃ = R [u] 是 R 上的一元多项式环.

定理 2. 设 R 和 S 都是交换幺环，幺元分别为 1, 1′，η 是 R 到 S 的同态且 η(1) = 1′，则对

任意 u ∈ S，η 可唯一扩充为 R [x] 到 S 的同态 ηu 使得 ηu(x) = u.

证明. R [x] = {a0 + a1x+ · · ·+ anx
n | ai ∈ R}，定义 ηu:

ηu(a0 + a1x+ · · ·+ anx
n) = η(a0) + η(a1)u+ · · ·+ η(an)u

n.
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映射 ηu 是良定义的，ηu(x) = η(1x) = 1′u = u，且 ηu 是同态映射.
若 η′ 也是 η 的扩充且 η′(x) = u，于是

η′

(
n∑

i=0

aix
i

)
=

n∑
i=0

η′(ai)u
i = ηu

(
n∑

i=0

aix
i

)
,

故 η′ = ηu，即扩充是唯一的.

推论 1. 设 R 是交换幺环，R [x] 和 R [y] 都是 R 上的一元多项式环，则 R [x] 与 R [y] 同构.

证明. 作 R 到 R [y] 的嵌入映射 i，则 i 是同态. 由定理2，i 可唯一扩充为 iy，使得

iy(a0 + a1x+ · · ·+ anx
n) = a0 + a1y + · · ·+ any

n,

于是 iy 是满同态，又 y 是 R 上超越元，于是 iy 又是单同态，故 iy 是同构.

推论 2. 设 R̃ 是交换幺环，R 是 R̃ 的子环且 1 ∈ R，R [x] 是 R 上一元多项式环，设 u ∈ R̃，

则存在 R [x] 中的理想 I 满足

R ∩ I = {0}, R [u] ∼= R [x] /I,

而且，当且仅当 I 6= {0} 时，u 是代数元.

证明. 考虑 R到 R̃的嵌入映射 i，则 i是同态.由定理2，i可以唯一扩充为 iu，满足 iu(R [x]) =

R [u]. 记 I = ker iu，则 I 是 R [x] 的理想，由同态基本定理，有

R [u] ∼= R [x] /I.

对任意 a ∈ R ∩ I，

a = i(a) = iu(a) = 0,

于是 R ∩ I = {0}. 考虑不全为零的 a0, a1, · · · , an，有

0 6=
n∑

i=0

aix
i ∈ I ⇐⇒ iu

(
n∑

i=0

aix
i

)
=

n∑
i=0

aiu
i = 0.

于是 I 6= {0} 当且仅当 u 为代数元.

推论 3. 设 R 是交换幺环，R [x] 是 R 上一元多项式环，若 I 是 R [x] 的理想，R ∩ I = {0}
且 I 6= {0}，则 R [x] /I 是 R 添加一个代数元所得的环.

证明. 记 π : R [x] → R [x] /I 为自然同态，则 π
∣∣
R
: R → π(R) 是满同态，而

ker π
∣∣
R
= I ∩R = {0},
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于是 π 是单同态. 故 π 是同构. 于是 R ∼= π(R).
令 u = π(x). 因为 I 6= {0}，于是存在不全为 0 的 a0, a1, · · · , an 使得

0 6=
n∑

i=0

aix
n ∈ I,

而

π

(
n∑

i=0

aix
i

)
=

n∑
i=0

π(ai)u
i = 0,

同时 π(a0), π(a1), · · · , π(an) 不全为零，于是 u 是 R 上的代数元.
而

R [x] /I = π(R [x]) = π(R) [π(x)] = π(R) [u] ∼= R [x] ,

正是 R 上添加 u 所得的环.

多元多项式是一元多项式的推广.

定义 7 (生成的子环). 设 R̃ 是交换幺环，R < R̃ 且 1 ∈ R. 设 u1, u2, · · · , un ∈ R̃，称包含 R

与 u1, u2, · · · , un 的最小子环

R [u1, u2, · · · , un] =

{∑
ak1k2···knu

k1
1 uk2

2 · · · ukn
n

∣∣∣∣ ak1k2···kn ∈ R

}
为 R 上添加 u1, u2, · · · , un 生成的子环.(其中 ak1k2···kn 仅有有限个不为 0)

定义 8 (代数相关, 代数无关). 如果 R 中存在有限多个 ak1k2···kn 6= 0 使∑
ak1k2···knu

k1
1 uk2

2 · · · ukn
n = 0,

则称 u1, u2, · · · , un 在 R 上是代数相关的，否则称 u1, u2, · · · , un 在 R 上是代数无关的.

定义 9 (n 元多项式环). 若 u1, u2, · · · , un 在 R 上是代数无关的，则称 R [u1, u2, · · · , un] 是

R 上的 n 元多项式环，R [u1, u2, · · · , un] 中的元素称为 n 元多项式.

定义 10. 多项式环 R [u1, u2, · · · , un] 中，形如 axk1
1 xk2

2 · · · xkn
n (a ∈ R, a 6= 0) 的元素称为单项

式，a 称为单项式的系数，k1 + k2 + · · · + kn 称为该单项式的次数，称多项式中所含单项式

的最高次数为多项式的次数. 特别的，非零常数项的次数为 0，规定 0 的次数为 −∞.

定理 3. 交换幺环 R 上的 n 元多项式环一定存在.

证明. 对 n 用数学归纳法. 现已证 n = 1 时命题成立，假设 n − 1 时命题成立，则存在

R [x1, x2, · · · , xn−1] 为多项式环，且为交换幺环. 那么交换幺环 R [x1, x2, · · · , xn−1] 上的一

元多项式环也存在，即 R [x1, x2, · · · , xn−1] [xn] 存在. 由于 R [x1, x2, · · · , xn] 是包含 R 与

x1, x2, · · · , xn 的最小的环，于是有

1 ∈ R ⊂ R [x1, x2, · · · , xn] ⊂ R [x1, x2, · · · , xn−1] [xn] .
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对任意 f ∈ R [x1, x2, · · · , xn−1] [xn]，存在 f0, f1, · · · , fk 使得

f = f0 + f1xn + · · ·+ fkx
k
n,

于是 R [x1, x2, · · · , xn−1] [xn] ⊂ R [x1, x2, · · · , xn]，故

R [x1, x2, · · · , xn] = R [x1, x2, · · · , xn−1] [xn] .

已知 x1, x2, · · · , xn−1 代数无关，下证 x1, x2, · · · , xn 代数无关. 设∑
ak1k2···knx

k1
1 xk2

2 · · · xkn
n = 0,

即证 ak1k2···kn = 0. 令
fi =

∑
ak1k2···kn−1ix

k1
1 xk2

2 · · · xkn−1

n−1 ,

则 fi ∈ R [x1, x2, · · · xn−1] 且
∑
i

fix
i
n = 0. 由于 xn 是 R [x1, x2, · · · xn−1] 上的超越元，于是

fi = 0，故 ak1k2···kn−1i = 0.

定理 4. 设 R 和 S 都是交换幺环，幺元分别为 1, 1′，η 是 R 到 S 的同态且 η(1) = 1′，则

对任意 u1, u2, · · · , un ∈ S，η 可唯一扩充为 R [x1, x2, · · · , xn] 到 S 的同态 ηu 使得 ηu(xi) =

ui, i = 1, 2, · · · , n.

推论 4. 交换幺环上任意两个 n 元多项式同构.

推论 5. 设 R̃ 是交换幺环，R 是 R̃ 的子环且 1 ∈ R，R [x1, x2, · · · , xn] 是 R 上 n 元多项式

环，设 u1, u2, · · · , un ∈ R̃，则存在 R [x1, x2, · · · , xn] 中的理想 I 满足

R ∩ I = {0}, R [u1, u2, · · · , un] ∼= R [x1, x2, · · · , xn] /I,

而且，当且仅当 I 6= {0} 时，u1, u2, · · · , un 是代数相关的.

推论 6. 设 R是交换幺环，R [x1, x2, · · · , xn]是 R上 n元多项式环，若 I 是 R [x1, x2, · · · , xn]

的理想，R ∩ I = {0} 且 I 6= {0}，则 R [x1, x2, · · · , xn] /I 是 R 添加 n 个代数相关元所得的

环.


