
唯一析因环上多项式环

本节总假定 R 是 UFD. 约定对任意 a ∈ R，有 a | 0，最大公因子 (a, 0) = a.

定义 1 (容度). 设 0 ̸= f(x) =
n∑

k=0

akx
k ∈ R [x]，称 (a0, a1, · · · , an) 为 f(x) 的容度，记作

c(f(x)).

注. 容度在相伴意义下唯一.

定义 2 (本原多项式). 设 0 ̸= f(x) ∈ R [x]，若 c(f(x)) ∼ 1，则称 f(x) 为本原多项式.

引理 1. 设 R [x] 是唯一析因环 R 上的多项式环，记 S 为 R [x] 中本原多项式的集合，则

1. 对任意非零多项式 f(x) ∈ R [x]，存在 f1(x) ∈ S 使得

f(x) = c(f)f1(x).

且分解在相伴意义下唯一.

2. 次数大于零的不可约多项式是本原多项式.

3. (Gauss 引理) 本原多项式的积仍为本原多项式.

证明. 1. 设 f(x) =
n∑

k=0

akx
k ̸= 0，记 d = c(f) = (a0, a1, · · · , an)，于是对任意 k = 0, 1, · · · , n，

存在 a′k 使得 ak = da′k，且 (a′0, a
′
1, · · · , a′n) ∼ 1，于是多项式 f1(x) =

n∑
k=0

a′kx
k ∈ S，且满足

f(x) = c(f)f1(x).
设另有 d′ ∈ R∗, f2(x) ∈ S 使得 f(x) = d′f2(x)，则 c(f2) ∼ 1，于是 d′c(f2) ∼ c(f) = d，

即 d′ ∼ d. 于是存在 u ∈ U 使得 d′ = ud，则 d′f2(x) = udf2(x) = df1(x)，于是由消去律，有

f1(x) ∼ f2(x). 故分解在相伴意义下是唯一的.
2. 设 f(x) ∈ R [x] 不可约且 deg f(x) > 0，则由结论 1，存在 f1(x) ∈ S 使得 f(x) =

c(f)f1(x)，由于 f(x) 不可约，于是 c(f) ∈ U，则 c(f) ∼ 1，故 f(x) ∈ S.

3. 设 f(x) =
n∑

k=0

akx
k，g(x) =

m∑
k=0

bkx
k，则

h(x) = f(x)g(x) =
m+n∑
k=0

ckx
k, ck =

∑
i+j=k

aibj.

假设 h(x) /∈ S，则存在素元素 p ∈ R使得 p | ck，对任意 k = 0, 1, · · · ,m+n.而 f(x), g(x) ∈ S，

于是存在 r, s 使得

p | ai, i = 0, 1, · · · , r − 1, p ∤ ar,
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p | bj, j = 0, 1, · · · , s− 1, p ∤ bs,

对于第 r + s 项，有

cr+s =
∑

i+j=r+s

aibj = arbs +
∑
i<r

i+j=r+s

aibj +
∑
j<s

i+j=r+s

aibj,

由于

p | cr+s p

∣∣∣∣ ∑
i<r

i+j=r+s

aibj, p

∣∣∣∣ ∑
j<s

i+j=r+s

aibj,

推出 p | arbs，这就导出矛盾. 故 h(x) ∈ S.

注. 本原多项式未必是不可约多项式，例如 x2 − 1 ∈ Z [x] 是可约的本原多项式. Gauss 引理
的证明与高等代数中几乎完全一致.

引理 2. 设 F 是唯一析因环 R 的分式域，于是 R [x] ⊂ F [x]. 设 S 是 R [x] 中本原多项式的

集合，记 R [x] 中的相伴关系为
R∼，F [x] 中的相伴关系为

F∼，则

1. 对任意非零多项式 f(x) ∈ F [x]，存在 g(x) ∈ S 使得 f(x)
F∼ g(x)且 g(x)在

R∼下唯一.

2. 设 f1(x), f2(x) ∈ F [x]，g(x), g1(x), g2(x) ∈ S 且

f1(x)
F∼ g1(x), f2(x)

F∼ g2(x), f1(x)f2(x)
F∼ g(x),

则 g1(x)g2(x)
R∼ g(x).

3. 设 f(x) ∈ R [x]，deg f(x) ⩾ 1且 f(x)在 R [x]中不可约，则 f(x)在 F [x]中也不可约.

证明. 1. 设 f(x) =
n∑

k=0

dkx
k ∈ F [x]，即 dk ∈ F，则存在 ak, bk ∈ R 且 bk ̸= 0 使得 dk =

ak
bk

.

令 b = b0b1 · · · bn，则
dkb = ak

∏
i≠k

bi ∈ R, k = 0, 1, · · · , n,

再令 d = (d0b, d1b, · · · , dnb)，则有 ck =
dkb

d
∈ R 且 (c0, c1, · · · , cn)

R∼ 1. 而

f(x) =
d

b

n∑
k=0

ckx
k =

d

b
g(x),

其中，0 ̸= d

b
∈ F，g(x) =

n∑
k=0

ckx
k ∈ R [x]，又 (c0, c1, · · · , cn)

R∼ 1，于是 g(x) ∈ S，有

f(x)
F∼ g(x).
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设 f(x)
F∼ g1(x)，g1(x) ∈ S. 因为 f(x)

F∼ g(x)，于是由传递性，g1(x)
F∼ g(x)，存在

u ∈ F ∗ 使得 g1(x) = ug(x). 存在 p, q ∈ R 使得 u =
p

q
，于是令 f̃(x) = pg(x) = qg1(x) ∈ R，

由引理1的结论 1 可知 g1(x)
R∼ g(x).

2. 由于相伴是同余关系，于是

f1(x)f2(x)
F∼ g1(x)g2(x)

F∼ g(x).

由于本原多项式的积仍是本原多项式，于是 g1(x)g2(x) ∈ S. 由结论 1，g1(x)g2(x)
R∼ g(x).

3. 反设 f(x) 在 F (x) 中可约，由于 F ∗ 中元素都是单位，即 f(x) 的平凡真因子，于

是存在 f1(x)，f2(x) 使得 f(x) = f1(x)f2(x) 且 deg f1(x), deg f2(x) ⩾ 1. 由结论 1，存在
g1(x), g2(x) ∈ S 使得 f1(x)

F∼ g1(x)，f2(x)
F∼ g2(x). 由相伴关系是同余关系，有

f(x) = f1(x)f2(x)
F∼ g1(x)g2(x).

由于 f(x) 是 R [x] 上的不可约多项式，由引理1的结论 2 得 f(x) ∈ S. 再由本引理的结论 2，
因为 f1(x), f2(x) ∈ F，f(x), g1(x), g2(x) ∈ S 且

f1(x)
F∼ g1(x), f2(x)

F∼ g2(x), f1(x)f2(x)
F∼ f(x),

于是有 g1(x)g2(x)
R∼ f(x)，这与条件 f(x) 在 R 上不可约矛盾.

定理 1. 唯一析因环上的一元多项式环是唯一析因环.

证明. 设 f(x) 是唯一析因环 R 中的多项式环，不妨设 deg f(x) > 0. 由引理1的结论 1，存
在 d ∈ R, g(x) ∈ S 使得 f(x) = dg(x). 因为 R 是 UFD，于是存在不可约元 p1, p2, · · · , pt 使
得 d = p1p2 · · · pt. 这些 pi 在 R [x] 中也不可约.

因为 d ∈ R，于是 deg f(x) = deg g(x). 设 F 是 R 的分式域，则 g(x) ∈ F [x] 有分解

g(x) = g1(x)g2(x) · · · gr(x).

其中 gi(x) 为 F [x] 中不可约多项式. 由引理2的结论 1，存在 pi(x) ∈ S 使得 gi(x)
F∼ pi(x)，

于是

g(x)
F∼ p1(x)p2(x) · · · pr(x).

又因为 g(x), pi(x) ∈ S，于是

g(x)
R∼ p1(x)p2(x) · · · pr(x).

不妨设 g(x) = p1(x)p2(x) · · · pr(x)，由于 pi(x) 在 F [x] 中不可约且 pi ∈ S，于是 pi(x) 在

R [x] 中也不可约. 于是 f(x) 有分解

f(x) = p1p2 · · · ptp1(x)p2(x) · · · pr(x).
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满足有限析因条件.
设 f(x) 还有分解

f(x) = q1q2 · · · qt′q1(x)q2(x) · · · qs(x),

其中 qi 是 R 中不可约元，qj(x) 是 R [x] 中不可约多项式且 deg qj(x) > 0，由引理1的结论 2
有 qj(x) ∈ S，由引理1的结论 3，有 q1q2 · · · qt′ ∈ S. 由引理1的结论 1，有

p1p2 · · · pt
R∼ q1q2 · · · qt′ ,

p1(x)p2(x) · · · pr(x)
R∼ q1(x)q2(x) · · · qs(x).

不妨设 p1p2 · · · pt = q1q2 · · · qt′ . 由于 R 是 UFD，于是 t = t′ 且存在 π1 ∈ St 使得

pi = qπ1(i).由引理2的结论 3知，pi(x), qi(x)均为 F [x]中的不可约多项式.而 F [x]是 Euclid
环，进而是 UFD，于是 r = s 且存在 π2 ∈ Sr 使得 pi(x) = qπ2(i)(x). 又由引理2的结论 1 可
得 pi(x)

R∼ qπ2(i)(x)，于是在相伴意义下分解唯一，故 R [x] 是唯一析因环.

推论 1. 唯一析因环上 n 元多项式环是唯一析因环.

证明. 对 n 作归纳法. 有 R [x1, x2, · · · , xn] = R [x1, x2, · · · , xn−1] [xn] 归结为一元多项式环.

定理 2 (Eisenstein判别法). 设 F 是唯一析因环 R的分式域，f(x) =
n∑

k=0

akx
k ∈ R [x]，n > 1

且 an ̸= 0. 若有素元素 p ∈ R 满足

1. p ∤ an;

2. p | ak, k = 0, 1, · · · , n− 1;

3. p2 ∤ a0,

则 f(x) 是 F [x] 中不可约元素.

证明. 由引理2的结论 3，只需证明 f(x) 在 R [x] 中不可约即可. 反设 f(x) = g(x)h(x)，其中

g(x) =
r∑

k=0

bkx
k，h(x) =

s∑
k=0

ckx
k 是次数大于零的 R [x] 中多项式，则

r + s = n, ak =
∑
i+j=k

bicj, p | a0, p2 ∤ a0.

设 p | b0，p ∤ c0. 又 p ∤ an，故 p ∤ br 且 p ∤ cs. 于是存在 t，使得 p | bi, i = 0, 1, · · · , t− 1

但 p ∤ bt. 而
at =

∑
i+j=t

bicj = btc0 +
∑
i<t

i+j=t

bicj.

由于 p

∣∣∣∣ ∑
i<t

i+j=t

bicj 但 p ∤ btc0，于是 p ∤ at. 这与条件 2 矛盾.
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例 1. 设 p 是素数，则 f(x) = xp−1 + xp−2 + · · ·+ 1 ∈ Q [x] 是不可约多项式.

证明. 令 g(x) = f(x+ 1)，则

g(x) =
(x+ 1)p − 1

(x+ 1)− 1
=

p∑
k=1

(
p

k

)
xk−1.

其中最高项系数为 1，p
∣∣ (p

k

)
, k = 1, 2, · · · , p−1，常数项为 p满足 p2 ∤ p.于是由 Eisenstein

判别法可知 g(x) 在 Q [x] 上不可约，进而 f(x) 不可约.


