
域上一元多项式环

域是特殊的整环. 整环中无零因子，对多项式 f(x), g(x)，有以下性质.

性质 1. f(x) · g(x) ̸= 0 ⇐⇒ f(x) ̸= 0, g(x) ̸= 0.

性质 2. deg(f(x)g(x)) = deg f(x) + deg g(x).

性质 3. 若 R 是整环，则 R [x] 也是整环，且二者的单位相同.

证明. 对前者，证明 R [x] 是无零因子的交换幺环即可，交换是因为 R 是交换的，又含有幺

元 1，假设存在零因子 f(x)，则对非零多项式 g(x)，有 f(x), g(x) ̸= 0，推出 f(x) · g(x) ̸= 0，

这与 f(x) 是零因子矛盾.
对后者，R的单位是 R [x]的单位是显然的，因为 R ⊂ R [x].反之，设 f(x), g(x) ∈ R∗ [x]

满足 f(x)g(x) = 1，则

deg(f(x)g(x)) = deg f(x) + deg g(x) = deg 1 = 0,

于是 deg f(x) = deg g(x) = 0，f(x), g(x) ∈ R∗.

注. 可以推广到 n 元多项式环.

定理 1. 设 F [x] 是域 F 上的一元多项式环，则对任意 f(x), g(x) ∈ F [x]，g(x) ̸= 0，存在唯

一的 q(x), r(x) ∈ F [x] 使得

f(x) = q(x)g(x) + r(x), deg r(x) < deg g(x).

证明. 首先证明 q(x), r(x) 的存在性. 设 deg g(x) = m，由于 deg g(x) ̸= 0，故 m ⩾ 0. 当
deg f(x) < m 时可取 q(x) = 0，r(x) = f(x). 对 f(x) 的次数作归纳，设 deg f(x) < n 时，

q(x) 与 r(x) 已存在.
当 deg f(x) = n 时，不妨设 n ⩾ m. 设

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b0,

由于 deg g(x) = m，于是 bm ̸= 0. 取 q0(x) = anb
−1
m xn−m，令

f1(x) = f(x)− q0(x)g(x) = (an−1 − anb
−1
m bm−1)x

n−1 + · · · ,

故 deg f1 ⩽ n− 1 < n. 由归纳假设，存在 q1(x), r1(x) 使得

f1(x) = q1(x)g(x) + r1(x),
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于是

f(x) = q0g(x) + q1g(x) + r1(x) = (q0(x) + q1(x))g(x) + r1(x).

于是 q(x) = (q0(x) + q1(x))，r(x) = r1(x).
然后证明 q(x), r(x) 的唯一性. 假设另有 q′(x), r′(x) 使得

f(x) = q′(x)g(x) + r′(x), deg r′(x) < deg g(x),

则

(q(x)− q′(x))g(x) = r′(x)− r(x),

若 q(x)− q′(x) ̸= 0，则

deg(q(x)− q′(x))g(x) = deg(q(x)− q′(x)) + deg g(x) = deg(r′(x)− r(x)).

而

deg(r′(x)− r(x)) = max{deg r(x), deg r′(x)} < deg g(x),

导出矛盾，于是 q′(x) = q(x)，r′(x) = r(x).

注. 分别称 q(x), r(x) 为 f(x) 除以 g(x) 的商式和余式. 若 f1(x) 与 f2(x) 除以 g(x) 的余式

相同，则称 f1(x) 与 f2(x) 同余，记作 f1(x) ≡ f2(x) (mod g(x)).

推论 1. 域上一元多项式环是 Euclid 环.

证明. 令 δ(f(x)) = 2deg f(x)，则

δ(r(x)) < δ(g(x)),

于是 F [x] 为 Euclid 环.

推论 2. 设 F [x] 是域 F 上一元多项式环，f1(x), f2(x), g(x) ∈ F [x] 且 g(x) ̸= 0，则

f1(x) ≡ f2(x) (mod g(x)) ⇐⇒ g(x) | (f1(x)− f2(x)).

而且 f1(x) ≡ f2(x) (mod g(x)) 对 F [x] 的加法和乘法都是同余关系.

推论 3. 设 F [x] 是域 F 上一元多项式环，f(x) ∈ F [x]，c ∈ F，则

f(x) ≡ f(c) (mod (x− c))

且 (x− c) | f(x) ⇐⇒ f(c) = 0.
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证明. 恒等映射 idF 可以开拓为同态 η : F [x] → F，使得 η(x) = c. 又因为 deg(x − c) = 1，

故存在 q(x) ∈ F [x]，r ∈ F 使得

f(x) = q(x)(x− c) + r.

两边以 η 作用，得

f(c) = q(c)(c− c) + r = r.

于是

f(x)− f(c) = f(x)− r = q(x)(x− c),

得 (x− c) | (f(x)− f(c))，故

f(x) ≡ f(c) (mod (x− c)).

特别地，(x− c) | f(x) ⇐⇒ f(x) ≡ 0 (mod (x− c)) ⇐⇒ f(c) = 0.

定义 1 (根). 设 F [x] 是域 F 上一元多项式环，c ∈ F 且使 f(c) = 0，则称 c 是 f(x) 的一个

根.

注. 由 (x− c) | f(x) ⇐⇒ f(c) = 0 可以看出，多项式的根与一次因式的关系是十分密切的.

推论 4. 若 c1, c2, · · · , ck 是 f(x)的互不相同的根，则有
k∏

i=1

(x− ci) | f(x)，从而 k ⩽ deg f(x).

证明. 因为 x − ci 的因子只能是 1 次的和 0 次的，而 0 次的因子即 F 中元素，为单位. 那
么 x− ci 的一次因子不是真因子，所以 x− ci 是不可约元素. 对任意 ci ̸= cj，有

1

ci − cj
(x− cj)−

1

ci − cj
(x− ci) = 1,

则 (x− ci, x− cj) = 1.
对任意 ci，f(ci) = 0，于是 (x− ci) | f(x)，又对任意 ci ̸= cj 有 (x− ci, x− cj) = 1，于

是
k∏

i=1

(x− ci) | f(x)，从而 k ⩽ deg f(x).

推论 5. 设 S 是整环，R 是 S 的子环且 1 ∈ R，则 f(x) ∈ R [x] 在 S 中不同根的个数不超

过 deg f(x).

证明. 设 F 为 S 的分式域，则 R [x] ⊂ S [x] ⊂ F [x]，即 f(x) ∈ F [x]，由推论4可得.

定理 2. 设 F 是域，G 是 F ∗ = F\{0} 的一个有限的乘法子群，则 G 为循环群.
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证明. |G| 有限，取 G 中阶最大的元素 g，设其阶为 m，则 ⟨g⟩ = {1, g, g2, · · · , gm−1}. 下证
G = ⟨g⟩.

一方面，G 是群，对运算封闭，于是 ⟨g⟩ ⊂ G. 下证 G ⊂ ⟨g⟩.
对任意 h ∈ G，去证 h 是 xm − 1 的根，从而 |G| ⩽ deg(xm − 1) = m，而 |⟨g⟩| = m，于

是 G ⊂ ⟨g⟩ 即完成证明.
要证 h 是 xm − 1 的根，即证 hm − 1 = 0，hm = 1. 记 |h| = m1，证明 m1 | m 即可.
反设 m1 | m，则必有素数 p 满足 m1 = psl，m = prk，其中 (p, lk) = 1，使 s > r. 由

(ps, l) = 1，有 |hl| = ps，同理有 |gpr | = k，而 G 是 Abel 群，有

hl · gpr = gp
r · hl,

且 (ps, k) = 1，于是

|hl · gpr | = psk > prk = m,

这与 m 阶元素 g 是阶最大的元素矛盾. 故 m1 | m.

注. 这个定理的证明很有技巧性，值得进一步探究学习.

推论 6. 有限域 F 的非零元素集 F ∗ 对乘法作成循环群.


