
主理想整环上的有限生成模

以下总假设 D 是主理想整环.

1 自由模的子模

约定用“r(M)”表示自由模M 的秩数.一般环上的自由模的子模不一定仍是自由模，举
例如下.

例 1. Z6-模 Z6 是自由模，而 〈2〉 = Z · 2 =
{
0, 2, 4

}
是 Z6 的一个子模，但不是自由模.

证明. 若 〈2〉 是零秩自由模，则只有一个零元素，于是它不是零秩的；
若 〈2〉 是秩大于零的自由模，则存在一个基，但对 3 ∈ Z6 作为系数环中的非零元素，它

与 0, 2, 4 的乘积均为零，于是 〈2〉 不是自由模.

定理 1. 设 M 是自由 D-模，则 M 的任意子模 N 也是自由 D 模，且 r(N) ⩽ r(M).

证明. 对 r(M) 用归纳法. 当 r(M) = 0 时，M 中只有零元，任意模 N ⊂ M = {0}，于是
N = {0}，N 为零秩自由模，且 r(N) = r(M) = 0，命题成立.

假设 r(M) = n− 1 时命题成立，下证 r(M) = n 时命题也成立.
记 e1, e2, · · · , en 为 M 的一组基，令

I1 =

{
a1 ∈ D |

n∑
i=1

aiei ∈ N

}
,

对任意 a1, a
′
1 ∈ I1，有

n∑
i=1

aiei ∈ N，

n∑
i=1

a′iei ∈ N，于是

n∑
i=1

aiei −
n∑

i=1

a′iei =
n∑

i=1

(ai − a′i)ei ∈ N,

于是 a1 − a′1 ∈ I1. 对任意 r ∈ D，a1 ∈ I1，有

r
n∑

i=1

aiei =
n∑

i=1

(rai)ei ∈ N,

于是 ra1 ∈ I. 由理想的充要条件，I1 ◁D.
设 I1 = 〈d1〉，若 d1 = 0，则 N ⊂ 〈e2, e3, · · · , en〉，记 M ′ = 〈e2, e3, · · · , en〉 是秩为 n− 1

的自由模，于是由归纳假设，r(N) ⩽ r(M ′) < r(M).

1
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若 d1 6= 0，定义 f =
n∑

i=1

diei. 则 e2, e3, · · · , en 无法生成 f，f /∈ M ′. 下面证明 N =

Df ⊕ (N ∩M ′).
由于 Df ⊂ N，M ∩M ′ ⊂ N，于是 Df ⊕ (N ∩M ′) ⊂ N .

对任意 g =
n∑

i=1

aiei ∈ N，a1 ∈ I1 = 〈d1〉，于是存在 a′1 ∈ D 使得 a1 = a′1d1，于是

g − a′1f =
n∑

i=2

(ai − a′1di)ei ∈ M ′,

由于 g ∈ N，a′1f ∈ N，于是 g − a′1f ∈ N ∩M ′，故 N ⊂ Df + (N ∩M ′).

对任意 lf ∈ Df ∩ (N ∩ M ′) ⊂ M ′，lf = l

n∑
i=1

diei ⊂ M ′，于是 ld1e1 = 0. 而 e1 是

线性无关的元素，d1 6= 0 且 D 无零因子，于是 l = 0，即 Df ∩ (N ∩ M ′) = {0}，于是有
N = Df ⊕ (N ∩M ′).
又 f 是线性无关的，故 Df 是 1 秩自由模. 由 N ∩M ′ ⊂ M ′，由归纳假设知 N ∩M ′ 是

自由 D-模，且 r(N ∩M ′) ⩽ n− 1.再据自由模的直和仍为自由模，且直和的秩为秩的和，于
是 N 为自由 D-模，且 r(N) = r(Df) + r(N ∩M ′) ⩽ 1 + n− 1 = n.

一般环上有限生成模的子模也不一定的有限生成模，类似地，有以下定理.

定理 2. 设 M 是有限生成 D-模，则 M 的子模也是有限生成 D-模.

证明. 设 N 是 M 的任一子模. 由于 M 是有限生成 D-模，于是存在 g1, g2, · · · , gn 使得
M = 〈g1, g2, · · · , gn〉. 对 D(n) 的一组基 e1, e2, · · · , en，取 g1, g2, · · · , gn ∈ M，可以由自由模

的充要条件建立模同态 φ : D(n) → M 满足 φ(ei) = gi, 1 ⩽ i ⩽ n. 又 g1, g2, · · · , gn 是 M 的

生成组，于是对任意 x =
n∑

i=1

digi ∈ M, di ∈ D，有

φ(
n∑

i=1

diei) =
n∑

i=1

diφ(ei) =
n∑

i=1

digi = x,

于是 φ 是满同态.
令 K = φ−1(N)，即 N 的完全原像，则由模的同态定理，K 是 D(n) 的子模. 由定理1，

K 是自由模，且 r(k) ⩽ n. 取 K 的一组基 f1, f2, · · · , fr(k)，则 φ(f1), φ(f2), · · · , φ(fr(k)) 是
N 的一组生成元，于是 N 是有限生成的.

2 PID 上有限生成模的结构
定义 1 (扭元与自由元). 设 M 是 R-模，x ∈ M 若有非零的 a ∈ R 使得 ax = 0，则称 x 是

M 的扭元或挠元，否则称 x 为 M 的自由元或无关元.
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定义 2 (扭模与无扭模). 若 R-模 M 的每个元素都是扭元，则称 M 是 R 上的扭模或挠模；

若 M 的每个非零元都是自由元，则称 M 是 R 上的无扭模或无挠模.

注. 1. 扭元即线性相关元，自由元即线性无关元.

2. 扭元与系数环有关.

3. 零元一定是扭元.

4. 若 x 是自由元，则 Rx 是一秩自由模.

5. 若 M 是 R 上的无扭模，x ∈ M，a ∈ R 且 a 6= 0，则 ax = 0 ⇐⇒ x = 0.

定义 3 (零化子). 设 M 是 R-模，x ∈ M，称 ann = {a ∈ R | ax = 0} 为 x 的零化子.

命题 1. 整环 R 上的自由模 M 一定是无扭模.

证明. 对任意 x ∈ M，x 6= 0，设 r(M) = n，则 x =
n∑

i=1

xiei 6= 0，xi ∈ R，则存在 i使 xi 6= 0.

对任意非零的 a ∈ R，ax =
n∑

i=1

axiei，由于 e1, e2, · · · , en 线性无关，xi 6= 0，且 R 中无零因

子，于是 axiei 6= 0，于是 ax 6= 0. 因而 x 是 M 中的自由元，故 M 是 R 上的无扭模.

但反过来一般是不成立的，反例如下.

例 2. 有理数加群 Q 作为 Z-模是无扭模，但不是自由模.

证明. 对任意 m ∈ Z，非零元 x ∈ Q，mx = 0 ⇐⇒ m = 0，于是 Q 是 Z 上的无扭模. 对任
意

p1
q1
,
p2
q2

∈ Q，这里 (pi, qi) = 1，有 p2q1,−p1q2 ∈ Z 使得

p2q1
p1
q1

− p1q2
p2
q2

= 0,

于是
p1
q1
,
p2
q2
线性相关. 若 Q 是自由 Z-模，则 r(Q) = 0 或 1. 又 Q 有非零元，于是 r(Q) = 1.

设 Q 的基为
p

q
，这里 (p, q) = 1，则

1

2q
不能被

p

q
表出，于是 Q 不是自由模.

不禁会想，对系数环 R 和模 M 加一些什么限制条件才能满足无扭模是自由模.

定义 4 (极大线性无关组). 对有限生成 R-模 M，设 x1, x2, · · · , xm 是 M 的生成元，则存在

子集 x1, x2, · · · , xr 满足以下条件：

1. x1, x2, · · · , xr 线性无关，即

r∑
i=1

aixi = 0 ⇐⇒ ai = 0, 1 ⩽ i ⩽ r;
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2. 对任意 j ⩾ r且 j ⩽ m，有 x1, x2, · · · , xr, xj线性相关，即存在不全为零的 a1j, a2j, · · · , arj, aj ∈
R 使得

r∑
i=1

aijxi + ajxj = 0,

则称 x1, x2, · · · , xr 是 x1, x2, ] · · · , xm 中的极大线性无关组.

注. 只要 M 不是零模，就存在非零元作为无关元，于是存在极大线性无关组.

定理 3. 设 M 是 D 上有限生成的无扭模，则 M 是自由 D-模.

证明. M 是零模时平凡成立. M 不是零模时，设 M = 〈x1, x2, · · · , xm〉，则存在极大线性无
关组 x1, x2, · · · , xr，设 N = 〈x1, x2, · · · , xr〉 = Dx1 ⊕Dx2 ⊕ · · · ⊕Dxr. 而 Dxi (1 ⩽ i ⩽ r)

是一秩自由模，于是 N 为秩 r 的自由模.
对任意 j ⩽ r，由极大线性无关组的定义，存在不全为零的 a1j, a2j, · · · , aij, aj ∈ D 使得

r∑
i=1

aijxi + ajxj = 0,

则对任意 r + 1 ⩽ j ⩽ m，有 aj 6= 0，否则与 x1, x2, · · · , xr 线性无关矛盾.
令 a = ar+1ar+2 · · · am，设 η : M → M,x 7→ ax，容易验证 η 是模同态，于是 η(M) 是

D-模. 由模同态基本定理，有
M/ ker η ∼= η(M),

而 ker η = {x ∈ M | ax = 0}，由于 a 6= 0，于是 ker f = {0}. 代入，有 M ∼= η(M).
下证 η(M) 是 N 的子模. 当 1 ⩽ i ⩽ r 时，

η(xi) = axi ∈ N.

当 r + 1 ⩽ j ⩽ m 时，

η(xj) = axj =

(∏
k ̸=j

ak

)
ajxj = −

(∏
k ̸=j

ak

)
r∑

i=1

aijxi ∈ N,

于是 η(M) 是 N 的子模，再由定理1可得 η(M) 是自由模，于是 M 为自由模.

定理 4. 设 R 是整环，M 是 R 上的模，记 M 中扭元组成的集合为

TorM = {x ∈ M | ∃a 6= 0 s.t. ax = 0} = {x ∈ M | annx 6= {0}} ,

则 TorM 是 M 的子模，且商模 M/TorM 是无扭模.
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证明. 对任意 x, y ∈ Tor，设 a, b ∈ R 使得 ax = by = 0. 则

ab(x− y) = b(ax)− a(by) = 0,

ab ∈ R，于是 x − y ∈ TorM . 由子群的充要条件，TorM 是 M 的子群. 对任意 a ∈ R，

x ∈ TorM，存在 c ∈ R 使得 cx = 0，

c(ax) = a(cx) = 0,

于是 ax ∈ TorM . 由子模的定义可知 TorM 是 M 的子模.
记 M = M/TorM . 对任意 x ∈ TorM，存在 a ∈ R 且 a 6= 0 使得 ax = 0 = 0+TorM =

TorM . 于是 ax ∈ TorM，存在 b ∈ R 且 b 6= 0 使得 b(ax) = bax = 0. 又 R 是整环，无零因

子，a 6= 0, b 6= 0，于是 ab 6= 0，则 x ∈ TorM，有 x = TorM = 0. 于是 TorM = {0}，即
M/TorM 是无扭模.

定理 5. 设 M 是 D 上的有限生成模，则存在 M 自由子模 N，使得

M = TorM ⊕N

且 N 在同构意义下是唯一的.

证明. 设M 的生成元为 x1, x2, · · · , xm. 记M = M/TorM，xi = xi+TorM，则 x1, x2, · · · , xm

是 M 的一组生成元. 由定理4，M 是无扭模，由定理3，M 是自由 D-模.
设 π : M → M 为自然映射，并设 π(e1), π(e2), · · · , π(er) 是 M 的一组基. 则对任意

x ∈ M，存在 ai ∈ R 使得

x =
r∑

i=1

aiπ(ei).

设
r∑

i=1

aiei = 0，则

π

(
r∑

i=1

aiei

)
=

r∑
i=1

aiπ(ei) = 0.

而 π(e1), π(e2), · · · , π(er) 线性无关，于是 a1 = a2 = · · · = ar = 0. 因而 e1, e2, · · · , er 线
性无关. 记 N = 〈e1, e2, · · · , er〉 是 M 的 r 秩自由子模，下证 M = TorM ⊕N .
由于 TorM ⊂ M，N ⊂ M，于是 N + TorM ⊂ M .
对任意 x ∈ M，x = π(x) ∈ M/TorM，存在 bj ∈ D 使得

x+ TorM = x =
r∑

j=1

bjπ(ej) =
r∑

j=1

bj(ej + TorM) =
r∑

j=1

bjej + TorM,
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于是 x−
r∑

j=1

bjej ∈ TorM，记 y = x−
r∑

j=1

bjej. 则

x = y +
r∑

j=1

bjej ∈ TorM +N.

对任意 z ∈ TorM ∩N，z ∈ TorM，于是 z 是扭元；N 是主理想整环上的自由模，于是

N 是无扭模，扭元只有 0，而 z ∈ N，于是 z = 0，即 TorM ∩N = {0}. 因此M = TorM⊕N .
可以证明 N ∼= M/TorM，于是 N 的秩可以由 M/TorM 确定，其中 TorM 又可以由

M 确定，于是 N 的秩可以由 M 确定，因此在同构意义下 N 是唯一确定的.

3 PID 上有限生成扭模的分解
前面已经把 PID 上的有限生成模分解成了一个自由模 N 与一个扭模 TorM . 对于自由

模，结构是清晰的，下面研究扭模 TorM 的分解. 由于 TorM 是 M 的子模，由定理2可知
TorM 也是有限生成的，于是讨论有限生成扭模的分解.

定义 5. 设 R 是交换幺环，定义 M(a) = {x ∈ M | ax = 0}，则 M(a) 是 M 的子模.

证明. 对任意 x, y ∈ M(a)，c ∈ R，有

1. a(x− y) = ax− ay = 0;

2. a(cx) = c(ax) = 0,

于是 x− y ∈ M(a)，cx ∈ M(a)，故 M(a) 是 M 的子模.

性质 1. 设 M 是 D 上的有限生成扭模，则

1. M(0) = M . 若 a 可逆，则 M(a) = {0};

2. 若 a | b，则 M(a) ⊂ M(b); 若 a ∼ b，则 M(a) = M(b).

3. 若 a, b ∈ D，则 M(a) ∩M(b) = M(gcd(a, b));

4. 若 (a, b) = 1，则 M(ab) = M(a)⊕M(b).

证明. 1. 对任意 x ∈ M，都有 0x = x，于是 M(0) = M . 若 a 可逆，对 x ∈ M(a)，有

x = 1x = a−1ax = 0，于是 M(a) = {0}.
2. 若 a | b，则存在 c ∈ D 使得 b = ca，对任意 x ∈ M(a)，有 bx = c(ax) = 0，于是

x ∈ M(b)，故 M(a) ⊂ M(b). 若 a ∼ b，则 a | b 且 b | a，故有 M(a) = M(b).
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3. (a, b) | a且 (a, b) | b，于是M((a, b)) ⊂ M(a)∩M(b). 又 D是 PID，于是存在 u, v ∈ D

使得

(a, b) = ua+ vb,

对任意 x ∈ M(a) ∩M(b)，有 ax = bx = 0，于是

(a, b)x = (ua+ vb)x = uax+ vbx = 0,

则 x ∈ M((a, b))，故 M(a) ∩M(b) = M((a, b)).
4. M(a) ∩ M(b) = M((a, b)) = M(1) = {0}. 又 a | ab，b | ab，于是 M(a) ⊂ M(ab)，

M(b) ⊂ M(ab). 由于 M(ab) 是模，对 x ∈ M(a) ⊂ M(ab)，y ∈ M(b) ⊂ M(ab)，有

x+ y ∈ M(ab)，于是 M(a) +M(b) ⊂ M(ab).
由 (a, b) = 1，存在 u, v ∈ D 使得 ua+ vb = 1. 对任意 x ∈ M(ab)，x = 1x = uax+ vbx.

而 b(uax) = uabx = 0，a(vbx) = vabx = 0，于是 uax ∈ M(b)，vbx ∈ M(a)，x ∈ M(a)+M(b)，

于是 M(ab) ⊂ M(a) +M(b). 因此 M(ab) = M(a)⊕M(b).

定理 6. 设 M 是 D 上的有限生成扭模，a ∈ D∗\U 有素因式分解 a = upn1
1 pn2

2 · · · pnr
r . 其中

u 是 D 中的单位，p1, p2, · · · , pr 是互不相伴的素元素，则

M(a) = M(pn1
1 )⊕M(pn2

2 )⊕ · · · ⊕M(pnr
r ).

证明. 当 r = 1 时，a = upn1
1 ，则 a ∼ pn1

1 . 于是 M(a) = M(pn1
1 ).

假设 r − 1 时成立，则

M(a) = M(pn1
1 )⊕M(pn2

2 )⊕ · · · ⊕M(p
nr−1

r−1 ) =
r−1⊕
i=1

M(pni
i ),

当 r 时，有 a = upn1
1 pn2

2 · · · pnr−1

r−1 · pnr
r ，于是

M(a) =
r−1⊕
i=1

M(pni
i )⊕M(pnr

r ) =
r⊕

i=1

M(pni
i ).

定义 6 (p-分支). 设 M 是 D 模，p 是 D 的素元素，则称

Mp =
∞∪
i=1

M(pi) =
{
x ∈ M | ∃k s.t. pkx = 0

}
为 M 的 p-分支. 又若 M = Mp，则称 M 是 p-模.

性质 2. M(p) ⊂ M(p2) ⊂ · · · ⊂ M(pk) ⊂ · · · .

性质 3. Mp 是 M 的子模.
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性质 4. p-模的子模和商模仍是 p-模.

证明. 设 M 是 p-模，N 是 M 的子模，则对任意 x ∈ N ⊂ M，存在 i 使得 pix = 0，于是

N 也是 p-模.
对任意 x+N ∈ M/N，存在 i使得 pix = 0，于是有 pi(x+N) = pix+N = 0+N = N，

于是 M/N 也是 p-模.

定义 7 (模的零化子). 设 M 是幺环 R 上的模，则称

annM = {a ∈ R | ax = 0, ∀x ∈ M}

为 M 的零化子.

性质 5. annM =
∩
x∈M

annx.

性质 6. annM 是 R 的理想.

性质 7. 若 N1, N2 是 M 的子模且 N1 ⊂ N2，则 annN2 ⊂ annN1.

性质 8. 若 R 是交换环，对任意 x0 ∈ M 有 annx0 = annRx0.

引理 1. 设 M 是 D 上的扭模，则

1. 对任意 x ∈ M，存在 ax ∈ D 使得 annx = 〈ax〉，且 ax 由 x 在相伴意义下唯一确定. 又
存在M，使得 annM = 〈aM〉，aM 由M 在相伴意义下唯一确定，且 aM 是 {ax | x ∈ M}
的最小公倍式.

2. M = M(aM).

3. 若 M 6= {0} 且 M = 〈x1, x2, · · · , xr〉，则 aM = [ax1 , ax2 , · · · , aaxr ] 且 annM 是 D 的非

平凡理想.

证明. 1. 由于 D 是 PID，annx 是 D 的理想，于是存在 ax 使得 annx = 〈ax〉. 由 PID 的性
质，对任意 〈ax〉 = 〈a′x〉，有 ax ∼ a′x，于是 ax 由 x 在相伴意义下唯一确定. 对后者的结论同
理可得. 由于 annM =

∩
x∈M

annx，则 aM 是 {ax | x ∈ M} 的公倍式，对任意公倍式 c，有

c ∈
∩
x∈M

annx = annM = 〈aM〉,

于是 aM | c，则 aM 是 {ax | x ∈ M} 的最小公倍式.
2. M(aM) = {x ∈ M | aMx = 0}，于是 M(aM) ⊂ M . 对任意 x ∈ M，存在 aM ∈ annM

使得 aMx = 0，于是 M ⊂ M(aM).
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3. 由 1 知，M 是 ax1 , ax2 , · · · , axr 的公倍式. 对任意公倍式 c，因为 axi
xi = 0，于是有

cxi = 0. 对任意 x =
r∑

i=1

bixi，bi ∈ D，1 ⩽ i ⩽ r，有

cx = c
r∑

i=1

bixi =
r∑

i=1

bicxi = 0,

于是 c ∈ annM = 〈aM〉，故 aM | c.
因为 x1, x2, · · · , xr 是扭元，于是 ax1 , ax2 , · · · , axr 是非零的，最小公倍式 aM 6= 0，〈aM〉 6=

{0}. 反设 〈aM〉 = D，则 1 ∈ 〈aM〉，存在 a−1
M 使得 a−1

M aM = 1. 由结论 2 和性质1的结论 1，
有 M = M(aM) = {0}，这与 M 6= {0} 矛盾. 故 annM 是 D 的非平凡理想.

注. 结论 1 中的 {ax | x ∈ M} 中可能有无限个元素，也可以定义最小公倍式. 结论 2 中，aM
把 M 中所有元素都化零，而 M(aM) 是 M 中所有在 aM 下化零的元素，所以 M 中的所有

元素都在 M(aM) 中.

定理 7. 设 M 是 D 上的有限生成扭模，且 annM = 〈aM〉，aM = upn1
1 pn2

2 · · · pnr
r 是标准分解

式，则

1. 设 p 是 M 中一个素元素，则

Mp =

M(pni
i ), ∃i, p ∼ pi,

{0}, ∀i, p ≁ pi.

2. M =
r⊕

i=1

Mpi .

注. “aM = upn1
1 pn2

2 · · · pnr
r 是标准分解式”即：u 是单位，pi 之间互不相伴.

证明. 1. 若对任意 1 ⩽ i ⩽ r，p ≁ pi，则 (p, aM) = 1，于是 (pk, aM) = 1.

M(pk) = M(pk) ∩M = M(pk) ∩M(aM) = M((pk, aM)) = M(1) = {0}.

于是 Mp =
∞∪
k=1

M(pk) = {0}.

若存在 i 使得 p ∼ pi，则

Mp =
∞∪
k=1

M(pk) =
∞∪
k=1

M(pki ) = Mpi .

仅考虑当 k > ni 时即可. 此时

M(pki ) = M(pki ) ∩M = M(pki ) ∩M(aM) = M((pki , aM)) = M(pni
i ),
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于是 Mp = Mpi =
∞∪
i=1

M(pki ) = M(pni
i ).

2. M = M(aM) = M(upn1
1 pn2

2 · · · pnr
r ) =

r⊕
i=1

M(pni
i ) =

r⊕
i=1

Mpi .

推论 1. 设 N 是 M 的子模，则

N =
r⊕

i=1

Npi , Npi = N ∩Mpi .

证明. 设 annN = 〈b〉，由 N ⊂ M 有 annM ⊂ annN，于是 b | aM . 于是

b = u1p
k1
1 pk22 · · · pkrr , 0 ⩽ ki ⩽ ni,

于是 N = N(u1p
k1
1 pk22 · · · pkrr ) =

r⊕
i=1

N(pkii ) =
r⊕

i=1

Npi .

N ∩Mpi = N ∩
{
x ∈ M | ∃k s.t. pkx = 0

}
=
{
x ∈ N | ∃k s.t. pkx = 0

}
= Npi .

4 PID 上有限生成 p-模的分解
引理 2. 设 M 是 D 上的 n 秩自由模，N 是 M 的子模，M/N 是 p-模. 则存在 M 的一组

基 {e1, e2, · · · , en} 及一组非负整数 m1,m2, · · · ,mn 使得 {pm1
1 e1, p

m2
2 e2, · · · , pmn

n en} 是 N 的

一组基.

证明. 对 n 用归纳法.
当 n = 1 时，设 M 的基为 {e}，M/N 是 e = e + N 生成的 D 上的 p-模. 于是存在

k ⩾ 0 使 anne = 〈pk〉，下证 {pke} 是 N 的基.
因 pke = 0，即 pk(e+N) = pke+N = 0 +N = N，于是 pke ∈ N .
设任意 d ∈ D 使得 d(pke) = (dpk)e = 0，有 dpk = 0，而 pk 6= 0，D 是 PID，于是 d = 0.

所以 pke 是线性无关元.
对任意 ae ∈ N，ae = a(e+N) = ae+N = ae = 0，所以 a ∈ anne = 〈pk〉，于是 pk | a.

存在 a′ ∈ D 使得 a = a′pk，于是对任意 ae ∈ N，有 ae = a′(pke). 所以 pke 是 N 的生成组.
综上所述，{pke} 是 N 的一组基.

下设秩为 n− 1 时成立，去证秩为 n 时也成立.
设 M 的一组基为 {f1, f2, · · · , fn}，记

Ii =

{
ai ∈ D |

n∑
j=1

ajfj ∈ N

}
,
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则可证 Ii 是 D 的理想，于是存在 ci ∈ D 使得 Ii = 〈ci〉.
因为存在 ni 使 pnif = 0，即 pni(fi +N) = pnifi +N = 0+N = N，于是 pnifi ∈ N . 由

I1 的定义可得 pni ∈ I1 = 〈ci〉，于是 ci | pni . 由于 p是素元素，于是存在 li ⩽ ni 使得 ci ∼ pli，

故 〈ci〉 = 〈pli〉.
不妨设 l1 是 {li} 中的最小元. pl1 ∈ I1，故有

g = pl1f1 +
n∑

j=2

ajfj = pl1

(
f1 +

n∑
j=2

a′jfj

)
∈ N.

记 e1 = f1 +
n∑

j=2

a′jfj，则 g = pl1e1. 将 (e1, f2, · · · , fn) 用基 (f1, f2, · · · , fn) 表示，有

(e1, f2, · · · , fn) = (f1, f2, · · · , fn)


1 0 · · · 0

a′2 1 · · · 0
... ... . . . ...
a′n 0 · · · 1


记右侧矩阵为 A，显然 detA = 1 ∈ U . 于是由等价条件得 (e1, f2, · · · , fn) 也是 M 的一组

基.
把 M = De1 ⊕Df2 ⊕ · · · ⊕ Dfn 记作 M = De1 ⊕M1，则 M1 是秩为 n − 1 的自由模.

记 N1 = N ∩M1 为 M1 的子模，且由模的同态定理有

M1/N1 = M1

/
(N ∩M1) ∼= (M1 +N)

/
N ⊂ M/N,

于是 M1/N1 是 p-模. 下证 N = Dg ⊕N1，其中显然 N ⊂ Dg ⊕N1.
对任意 x ∈ N，对 bi ∈ D，记

x =
n∑

i=1

bifi = b1f1 +
n∑

i=2

bifi,

而 b1 ∈ I1 = 〈pl1〉，于是存在 b′1 ∈ D 使得 b1 = b′1p
l1 . 于是 x = b′1p

l1f1 +
n∑

i=2

bifi，则

x− b′1g ∈ N ∩M = N1,

即对任意 x ∈ N，x −Dg ∈ N1，所以 x ∈ Dg + N1. 又 Dg ∩ N1 ⊂ De1 ∩M1 = {0}，于是
N = Dg ⊕N1.
据归纳假设，有 M1 的基 {e2, e3, · · · , en} 使 {pm2e2, p

m3e3, · · · , pmnen} 是 N1 的基，故

有 {e1, e2, · · · , en} 使得
{
pl11 e1, p

m2
2 e2, · · · , pmn

n en
}
是 N 的基. 若记 m1 = l1，即得结论.
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定理 8. 设 M ′ 是 D 上有限生成的 p-模，则

M ′ =
m⊕
i=1

Dyi, annyi = 〈pki〉,

其中 1 ⩽ k1 ⩽ k2 ⩽ · · · ⩽ km. 且数 m 及数组 k1, k2, · · · , km 是被 M ′ 唯一确定的.

证明. 设 M ′ = 〈x1, x2, · · · , xn〉，并设 M 为 D 上的 n 秩自由模，{f1, f2, · · · , fn} 是 M 的一

组基. 则存在唯一的模同态 η : M → M ′ 满足 η(fi) = xi. 而 x1, x2, · · · , xn 是 M ′ 的生成元

组，于是 η 是满同态. 由模同态基本定理，M/ ker η ∼= M ′，于是 M/ ker η 是 p-模.
记 N = ker η，则 N 是 M 的子模，系数环 D 为 PID，于是 N 也是自由模. 由引

理2，存在 M 的一组基 {e1, e2, · · · , en} 使 {pm1e1, p
m2e2, · · · , pmnen} 是 N 的一组基. 不妨设

m1 ⩽ m2 ⩽ · · · ⩽ mn，于是

M ′ ∼= M/N =
n⊕

i=1

Dei

/ n⊕
i=1

Dpmiei ∼=
n⊕

i=1

Dei/Dpmiei.

当 mi = 0 时，pmi = p0 = 1，Dei/Dpmiei = {0}，可以从直和中删去. 假设有 m 个非零

的 mi，则

0 = m1 = m2 = · · · = mn−m < mn−m+1 ⩽ mn−m+2 ⩽ · · · ⩽ mn.

记 ki = mn−m+i，y′i = en−m+i +Dpkien−m+i，则

n⊕
i=1

Dei/Dpmiei =
m⊕
i=1

Den−m+i

/
Dpkien−m+i =

m⊕
i=1

Dy′i.

anny′i =
{
d ∈ D | dy′i = 0

}
=
{
d ∈ D | dy′i ∈ Dpkien−m+i

}
= 〈pki〉.

设同构映射 M ′ ∼=
m⊕
i=1

Dy′i 中，y′i 的原像为 yi，便有

M ′ =
⊕
i=1

Dy′i, annyi = 〈pki〉.

唯一性待证.

5 PID 上有限生成模的第一标准分解式
由前面已知主理想整环 D 上的有限生成模 M 可以分解为

M = TorM ⊕N,

其中 TorM 又可以分解为若干 p-模，设

TorM =
r⊕

i=1

(TorM)pi =
r⊕

i=1

Mpi ,
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记 ann(TorM) = 〈a〉，其中 a = pn1
1 pn2

2 · · · pnr
r 是标准分解式. 于是有

Mpi =

mi⊕
j=1

Dxij, annxij = 〈pkiji 〉.

这里数 m 及数组 1 ⩽ k1mi
⩽ k1(mi−1) ⩽ · · · ⩽ ki1 是被 Mpi 唯一确定的，于是被 M 唯

一确定. 每个 Mpi 表示成了 mi 个准素循环模的直和.
记 r(N) = m0，定义D上有限生成模M 的秩 r(M) = r(N) = m0. 设 {x01, x02, · · · , x0m0}

是 N 的一组基，则

N =

m0⊕
j=1

Dx0j,

表示成了 m0 个一秩自由模的直和. 于是

M = TorM ⊕N =
r⊕

i=1

mi⊕
j=1

Dxij ⊕
m0⊕
j=1

Dx0j =
r⊕

i=0

mi⊕
j=1

Dxij.

其中 annx0j = {0} = 〈0〉，当 i ⩾ 1 时，annxij = 〈pkiji 〉. 且在相伴意义下 p1, p2, · · · , pr
是被 M 唯一确定的，于是 annxij = 〈pkiji 〉, i ⩾ 1 是被 M 唯一确定的. 以及 m0,m1, · · · ,mr

是被 M 唯一确定的.
将分解与分类的过程总结为下述定理.

定理 9. 设 M 是主理想整环 D 上的有限生成模，则 M 可分解为有限个循环子模的直和，即

M = Dx1 ⊕Dx2 ⊕ · · · ⊕Dxn,

且 annxi = 〈0〉 或 〈pkii 〉. 其中 1 ⩽ i ⩽ n，pi 为 D 中素元素.
当 annxi = 〈0〉 时，Dxi 为自由模. 上述分解中自由模的个数 |{xi | annxi = 〈0〉}| 是被

M 唯一确定的，称为 M 的秩.
当 annxi = 〈pkii 〉 时，Dxi 为循环 pi 模. 每个 pkii 也是被 M 唯一确定的，称为 M 的初

等因子. 初等因子的集合 {pkii } 称为 M 的初等因子组.

注. 1. 上述分解称为 M 的第一标准分解式.

2. 可能有相同的初等因子，重复的要重复计.

3. 初等因子是不计次序的，因为 a = pn1
1 pn2

2 · · · pnr
r 这个乘积的因子是不计次序的.

4. r(M) 和初等因子组是 M 的全系不变量，即 r(M) 和初等因子组反过来可以在同构意

义下确定 M .

5. PID 上的准素循环模和一秩自由模是不可分解模，反设任一 Dxi = A⊕B，则 A 和 B

仍是 PID 上有限生成模，仍然可以代入上述定理，这导致准素循环模和一秩自由模的
项数增加，与项数的唯一性矛盾. 所以上述定理已经是 M 的最细的分解.
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6 PID 上有限生成模的第二标准分解式
引理 3. 设 M 是 D-模，x, y ∈ M，annx = 〈a〉，anny = 〈b〉 且 (a, b) = 1，则

D(x+ y) = Dx⊕Dy, ann(x+ y) = 〈ab〉.

证明. 对任意 z ∈ D(x + y)，存在 d ∈ D 使得 z = d(x + y) = dx + dy ∈ Dx + Dy，于是

D(x+ y) ⊂ Dx+Dy.
对 x ∈ M，由于 (a, b) = 1，于是存在 u, v ∈ D 使得 ua+ vb = 1.

x = 1x = (ua+ vb)x = vbx+ 0 = vb(x+ y) ∈ D(x+ y),

同理 y ∈ D(x+ y)，于是 D(x+ y) = Dx+Dy.
由于 Dx ⊂ M(a)，Dy ⊂ M(b)，于是

Dx ∩Dy ⊂ M(a) ∩M(b) = M((a, b)) = M(1) = {0},

于是 D(x+ y) = Dx⊕Dy.
由 ab(x+ y) = abx+ aby = 0，有 ab ∈ ann(x+ y)，即 〈ab〉 ⊂ ann(x+ y).
对任意 c ∈ ann(x + y)，c(x + y) = cx + cy = 0，而 cx ∈ Dx，cy ∈ Dy，Dx 和 Dy 是

直和，于是 cx = cy = 0. 于是 c ∈ 〈a〉，则 a | c，同理 b | c. 又 (a, b) = 1，于是 ab | c，则
c ∈ 〈ab〉，即 ann(x+ y) ⊂ 〈ab〉，于是 ann(x+ y) = 〈ab〉.

推论 2. 设 M 是 D-模，x1, x2, · · · , xr ∈ M，annxi = 〈ai〉，a1, a2, · · · , ar 两两互素，则

D

(
r∑

i=1

xi

)
=

r⊕
i=1

Dxi, ann
r∑

i=1

xi = 〈
r∏

i=1

ai〉.

证明. 对 r 作归纳法即可.

定理 10. 设 M 是主理想整环 D 上的有限生成模，则 M 可以分解为循环子模的直和，即

M =
s⊕

j=1

Dzj,

而且

annz1 ⊃ annz2 ⊃ · · · ⊃ annzs, annz1 6= D.

记 annzj = 〈dj〉，上述集链等价于 dj | dj+1. {dj} 在相伴意义下由 M 唯一确定，称 dj 为 M

的不变因子，{dj} 为 M 的不变因子组.

证明. 由定理9，M 可以分解为

M =
r⊕

i=1

mi⊕
j=1

Dxij ⊕
m0⊕
j=1

Dx0j,
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令 m = max{m1,m2, · · · ,mr}，对 i = 1, 2, · · · , r，j = mi +1,mi +2, · · · ,m，令 kij = 0，于

是 p
kij
i = 1. 令 Dxij = 0，于是 xij = 0. 则

annxij = D = 〈1〉 = 〈pkiji 〉,

令

zi = x1(m+1−i) + x2(m+1−i) + · · ·+ xr(m+1−i),

由于 p1, p2, · · · , pr 两两互素，于是 p
k1j
1 , p

k2j
2 , · · · , pkrjr 两两互素. 于是由推论2，Dzi 是循

环子模的直和仍是循环子模.

Dzi = D(
r⊕

j=1

xj(m+1−i)),

且可定义

〈dj〉 = annzj = 〈
r∏

i=1

p
ki(m+1−j)

i 〉.

于是 dj | dj+1 ⇐⇒ annzj ⊃ annzj+1.令 zm+t = x0t，于是有 zs = x0m0，这里 s = m+m0.

注. 1. 上述分解称为 M 的第二标准分解式.

2. dj 是讲究次序的，重复的要重复计，也可把最后那些 0 删去，称剩下的集合为不变因

子组.

3. r(M) 和不变因子组 {di} 是 M 的全系不变量.

4. 第二标准分解是 M 的“最粗”的分解，即任意两个循环子模都不能结合成一个新的循

环子模了.

5. M 的第二标准分解式的项数 ⩽ 第一标准分解式的项数. 等号成立当且仅当 r = 1 或

r = 0.

6. annM = annz1 = 0 (N 6= 0) 或 〈dm〉 (N = 0). 这里的 dm 相当于高等代数里的极小多

项式，其余的 dj 都是极小多项式的倍式.

7 PID 上有限生成模的非标准分解
定义 8 (非标准分解式). 设 M 是主理想整环 D 上的有限生成模，若 M 可以分解为循环子

模的直和，且不是第一标准分解式，又不是第二标准分解式，则称这个分解为 M 的非标准

分解式.

注. 不把每列取全或不在同一行都可以取出来非标准分解式，这种非标准分解式是大量的.
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已知非标准分解，可以继续分解，得到第一标准分解式，于是得到初等因子组，进而结

合成不变因子组，得到第二标准分解式.

引理 4. 设 M 是 D 上扭模，x ∈ M，annx = 〈ab〉 且 (a, b) = 1. 则存在 x1, x2 ∈ M，使

x = x1 + x2，Dx = Dx1 ⊕Dx2，annx1 = 〈a〉，annx2 = 〈b〉.

证明. 由 (a, b) = 1，存在 u, v ∈ D 使得 ua+ vb = 1，于是

x = 1x = (ua+ vb)x = uax+ vbx,

令 x1 = vbx，x2 = uax，则 a ∈ annx1，〈a〉 ⊂ annx1. 对任意 c ∈ annx1，cx1 = cvbx = 0，而

annx = 〈ab〉，于是存在 t ∈ D 使得 cvb = tab. 因为 b 6= 0，消去 b，得 cv = ta，于是

c = c(ua+ vb) = cua+ cvb = cua+ tab = a(cu+ ab) ∈ 〈a〉,

故 annx1 = 〈a〉. 同理，有 annx2 = 〈b〉. 由引理3，有 Dx = Dx1 ⊕Dx2.

推论 3. 设 M 是 D 上扭模，x ∈ M，annx = 〈
r∏

i=1

ai〉 且 a1, a2, · · · , ar 两两互素. 则存在

xi ∈ M, i = 1, 2, · · · , r 使得 x =
r∑

i=1

xi，Dx =
r⊕

i=1

Dxi，annxi = 〈ai〉.

例 3. 设 M 是 R [λ]-模，且 M =
6⊕

i=1

R [λ] xi，annx1 = 〈(λ+1)2(λ2+λ+1)〉，annx2 = 〈(λ−

1)2(λ2−λ−1)3〉，annx3 = 〈(λ2+λ+1)2〉，annx4 = 〈(λ2−1)(λ2+λ+1)〉，annx5 = annx6 = 〈0〉.
试求 M 的初等因子组和不变因子组，写出 M 的第一标准分解式和第二标准分解式.

解. (λ2 − λ− 1) =

(
λ− 1 +

√
5

2

)(
λ− 1−

√
5

2

)
，λ2 − 1 = (λ+ 1)(λ− 1).

由引理4及推论3，有 y1, y2 ∈ M，使 x1 = y1 + y2，

R [λ] x1 = R [λ] y1 ⊕ R [λ] y2,

anny1 = 〈(λ+ 1)2〉, anny2 = 〈(λ2 + λ+ 1)〉,

有 y3, y4, y5 ∈ M，使 x2 = y3 + y4 + y5，

R [λ] x2 = R [λ] y3 ⊕ R [λ] y4 ⊕ R [λ] y5,

anny3 = 〈(λ− 1)2〉, anny4 = 〈

(
λ− 1 +

√
5

2

)3

〉, anny5 = 〈

(
λ− 1−

√
5

2

)3

〉,

记 y6 = x3，anny6 = 〈(λ2 + λ+ 1)2〉. 有 y7, y8, y9 ∈ M，使 x4 = y7 + y8 + y9，

R [λ] x4 = R [λ] y7 ⊕ R [λ] y8 ⊕ R [λ] y9,
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anny7 = 〈λ+ 1〉, anny8 = 〈λ− 1〉, anny9 = 〈λ2 + λ+ 1〉,

记 y10 = x5，y11 = x6，anny10 = anny11 = 〈0〉.

于是 M =
11⊕
j=1

R [λ] yj，annyj 分别如上述. 它们或者是准素元生成的主理想，或者是 0，

故此分解为 M 的第一标准分解式.
初等因子组：

λ+ 1, (λ+ 1)2, λ− 1, (λ− 1)2,

λ2 + λ+ 1, λ2 + λ+ 1, (λ2 + λ+ 1)2,

(
λ− 1 +

√
5

2

)3

,

(
λ− 1−

√
5

2

)3


不变因子组：

d1 = 1 1 λ2 + λ+ 1 1 1

d2 = λ+ 1 λ− 1 λ2 + λ+ 1 1 1

d3 = (λ+ 1)2 (λ− 1)2 (λ+ λ+ 1)2

(
λ− 1 +

√
5

2

)3 (
λ− 1−

√
5

2

)3

d4 = d5 = 0.

故 M 的第二分解标准式为

M =
5⊕

j=1

R [λ] zj, annz1 = 〈λ2 + λ+ 1〉,

annz2 = 〈(λ+ 1)(λ− 1)(λ2 + λ+ 1)〉,

annz3 =
⟨
(λ+ 1)2(λ− 1)2(λ2 + λ+ 1)2

(
λ− 1 +

√
5

2

)3(
λ− 1−

√
5

2

)3⟩
,

annd4 = annd5 = 〈0〉.
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