
主理想整环上的矩阵

1 问题背景与思路

动机是从 PID上矩阵的角度独立证明 PID上有限生成模的结构定理，进而把求 PID上
有限生成模的标准分解式转化为 PID 上矩阵的计算.
首先给出之前证过的结论作为引理.

引理 1. 设 R是幺环，M 是 R-模，u1, u2, · · · , un ∈M，则M 是秩 n的自由模且 u1, u2, · · · , un
是 M 的一组基的充分必要条件是对任意 R-模 M ′ 中的 n 个元素 v1, v2, · · · , vn，存在唯一的
模同态 η :M →M ′ 使得 η(ui) = vi.

于是，想要研究 PID 上有限生成模 M ′ 的结构，设它的生成元为 x1, x2, · · · , xm，则可
以在秩 m 的自由模 M 的一组基 e1, e2, · · · , em 与 x1, x2, · · · , xm 之间建立唯一的模同态 η.
而 x1, x2, · · · , xm 是 M ′ 的生成元，于是 η 是满同态. 由同态基本定理，

M/ ker η ∼= M ′.

进而归结为研究同态核 N = ker η 的结构. 由于 PID 上自由模的子模仍是自由模，于是
N 是自由模.希望找到M 中的一组基使 N 中的一组基是M 中基的倍式，例如 e1, e2, · · · , em
是 M 的一组基，找到 d1, d2, · · · , dm 使得 d1e1, d2e2, · · · , dmem 是 N 的一组基. 进而作为引
理可以求出 M/N 的结构，即求出 M ′ 的结构. 下面来找这样的基.

设 f1, · · · , fn 为 N 的生成组，e1, e2, · · · , em 是 M 的一组基. 那么生成组的每个元素都
可以由 M 中的基作线性组合表出. 即存在唯一的 m× n 矩阵 A 使得

(f1, f2, · · · , fn) = (e1, e2, · · · , em)Am×n.

设又有 e′1, e
′
2, · · · , e′m 是 M 的基，f ′

1, f
′
2, · · · , f ′

n 是 N 的生成组，且存在唯一矩阵 B 使得

(f ′
1, f

′
2, · · · , f ′

n) = (e′1, e
′
2, · · · , e′m)Bm×n.

设

(e′1, e
′
2, · · · , e′m) = (e1, e2, · · · , em)Pm×m,

(f ′
1, f

′
2, · · · , f ′

n) = (f1, f2, · · · , fn)Qn×n,

其中 P ,Q 是 D 中可逆方阵. 则

(f ′
1, f

′
2, · · · , f ′

n) = (f1, f2, · · · , fn)Q = (e1, e2, · · · , em)AQ = (e′1, e
′
2, · · · , e′m)P−1AQ.
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由唯一性，有 B = P−1AQ. 因此若能找到合适的 P ,Q 使

B = P−1AQ =




d1

d2
. . .

dr

 O

O O


m×n

其中 d1, d2, · · · , dr ̸= 0，就有 f ′
1 = d1e

′
1, f

′
2 = d2e

′
2, · · · , f ′

r = dre
′
r, f

′
r+1 = · · · = f ′

n = 0. 那么
f ′
i 就是 e′i 的倍式了.
综上所述，问题归结为求出形如 B 的矩阵.

2 PID 上矩阵在相抵下的标准形
定义 1 (相抵). 设 D 是 PID，A,B 是 D 上 m×n矩阵.若有 D 上的 m,n阶可逆方阵 P ,Q

使 B = PAQ，则称 A 与 B 相抵.

命题 1. 相抵是等价关系.

证明. 验证反身性、对称性、传递性即可.

定义 2 (初等变换). 下列三类行 (列) 变换称为初等变换.

1. 第一类：对某两行 (列) 作对换.

2. 第二类：对某一行 (列) 乘以可逆元.

3. 第三类：某一行 (列) 乘以任意元加到另一行 (列).

定义 3 (初等方阵). 每类初等变换对应一个初等方阵. 设 Eij 表示仅第 i 行第 j 列为 1，其

余元素为 0 的方阵，则

1. 第一类：P ij = Eij +Eji +
∑
k ̸=i,j

Ekk.

2. 第二类：P (i(c)) = cEii +
∑
k ̸=i

Ekk，c 为 D 中可逆元.

3. 第三类：P (j, i(k)) = I + kEji.

对 m× n 矩阵作行 (列) 初等变换就相当于左 (右) 乘相应的初等方阵.

命题 2. 初等方阵都是可逆方阵，即它们的行列式为可逆元.
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命题 3. 每一类初等方阵的逆方阵仍然是同类的初等方阵.

命题 4. 两个 PID 上 m× n 矩阵相抵当且仅当它们可以通过左 (右) 乘一系列初等方阵互化，
当且仅当它们可以通过一系列的初等变换互化.

在唯一析因环中有如下定义.

定义 4 (长度). 设 a ∈ D∗\U 可以分解为

a = p1p2 · · · pr,

其中 pi 为不可约元素. 称 r 为 a 的长度，记作 l(a) = r. 定义可逆元 (单位) 的长度为 0.

性质 1. a | b⇒ l(a) ⩽ l(b).

性质 2. a ∼ b⇒ l(a) = l(b).

性质 3. a | b, l(a) = l(b) ⇐⇒ a ∼ b.

性质 4. a | b, b ∤ a⇒ l(a) < l(b).

定理 1. 设 D 是 PID，A 是 D 上 m× n 矩阵，则 A 相抵于

B =




d1

d2
. . .

dr

 O

O O


m×n

其中 d1, d2, · · · , dr ̸= 0，且 di | di+1, i = 1, 2, · · · , r − 1. 称 B 为 A 在相抵下的标准形或相

抵标准形或 Smith 标准形，{d1, d2, · · · , dr} 称为 A 的不变因子组.

证明. 若 A = O，已是标准形. 下设 A ̸= O.
不妨设 l(a11) 最小. 对任意 k，若有 a11 | a1k，则存在 q1k 使得 a1k = q1ka11. 对第 1 列乘

以 −q1k 加到第 k 列即可把第 1 行第 k 列化零.
对任意 j，若 a11 ∤ a1j，设 (a11, a1j) = d，则存在 a′11, a

′
1j 使得 a11 = a′11d，a1j = a′1jd 且

(a′11, a
′
1j) = 1. 于是存在 u, v 使得

ua′11 + va′1j = 1.

两边同乘以 d，有

ua11 + va1j = d.
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设

Q =



j

u · · · −a′1j · · · 0
... . . .

j v a′1j
... . . .
0 1


其中未标注的区域对角线上都是 1，其余位置均为 0. 则

detQ =

∣∣∣∣∣u −a′1j
v a′11

∣∣∣∣∣ = 1 ∈ U,

于是 Q 可逆. 
a11 · · · a1j · · ·

Q =


d · · · 0 · · ·


于是，在初等变换下可使第一行除对角元素外其余元素化为 0. 同理，可使第一列除对角元
素外其余元素化为 0. 得到 

c1 0 · · · 0

0
... C

0


接下来对右下角的 (m− 1)× (n− 1) 矩阵 C 作类似的初等变换，最终得到


c1

c2
. . .

cr

 O

O O


m×n

其中 c1, c2, · · · , cr ̸= 0. 若 cj ∤ cj+1，把第 j + 1 行加到第 j 行，有
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



c1

c2
. . .

cj cj+1

cj+1

. . .
cr


O

O O


m×n

于是可以继续作初等变换，使第 j 行第 j + 1 列化零，此时得到的 dj | dj+1. 于是有

B =




d1

d2
. . .

dr

 O

O O


m×n

其中 d1, d2, · · · , dr ̸= 0，且 di | di+1, i = 1, 2, · · · , r − 1.

注. 若 D 是 Euclid环，则可以用带余除法，对于 a11 ∤ a1j，存在 q1j, r1j 使得 a1j = q1ja11+r1j，

此时 δ(r1j) < δ(a11)，作对换以保证左上角为最小次数. 因为正整数集总存在最小元，于是经
过有限次对换即可使第 1 行第 j 列化零.

注. 上述暂未证明唯一性，将在未来定理中叙述.

3 第二标准分解式的又一证明

由定理1可知任一矩阵 A 的相抵标准形 B 总是存在的，由前面的分析，于是有下面的

引理.

引理 2. 设 D 是 PID，M 是 D 上秩 m 的自由模，N 是 M 的子模. 则存在 M 的一组基

e1, e2, · · · , em 及 D 中 r 个非零元素 d1, d2, · · · , dr 满足

1. di | di+1, i = 1, 2, · · · , r − 1;

2. d1e1, d2e2, · · · , drer 是 N 的一组基.

定理 2. 设 D 是 PID，M ′ 是有限生成的 D-模. 则

M ′ =
r⊕

i=1

Dyi ⊕
m⊕

i=r+1

Dyi, annyi ⊃ annyi+1.
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且当 i = 1, 2, · · · , r时，annyi = ⟨di⟩，di称为M ′的不变因子，且有 di | di+1, i = 1, 2, · · · , r−1.
当 i = r + 1, · · · ,m 时，annyi = {0}.

证明. 设 M ′ = ⟨x1, x2, · · · , xm⟩，取 D 上的 m 秩自由模 M，e′1, e
′
2, · · · , e′m 是 M 的一组基.

作同态 η :M →M ′，η(e′i) = xi，则该同态是满同态. 记 N = ker η，由同态基本定理，有

M ′ ∼= M/N.

任取 N 的生成元组 (f ′
1, f

′
2, · · · , f ′

n) = (e′1, e
′
2, · · · , e′m)Am×n，则存在 D 上的 m,n 阶可逆方

阵 P ,Q 使得

PAQ =




d1

d2
. . .

dr

 O

O O


m×n

其中 d1, d2, · · · , dr ̸= 0，且 di | di+1, i = 1, 2, · · · , r − 1.
令 (e1, e2, · · · , em) = (e′1, e

′
2, · · · , e′m)P−1 得 M 的一组基.

令 (f1, f2, · · · , fn) = (f ′
1, f

′
2, · · · , f ′

n)Q 得 N 的一个生成组.
事实上，由引理2，{fi = diei | i = 1, 2, · · · , r} 是 N 的一组基. 取

(y1, y2, · · · , ym) = η(e1, e2, · · · , em) = η(e′1, e
′
2, · · · , e′m)P−1 = (x1, x2, · · · , xm)P−1,

于是由 η 是 M 到 M ′ 的满同态知

M ′ = ⟨y1, y2, · · · , ym⟩ =
m∑
i=1

Dyi.

当 i = 1, 2, · · · , r 时，因为

diyi = diη(ei) = η(diei) = η(fi) = 0,

于是 di ∈ annyi，有 ⟨di⟩ ⊂ annyi. 反之，对任意 a ∈ annyi 有 ayi = 0，即

ayi = aη(ei) = η(aei) = 0.

于是 aei ∈ ker η = N，而 {diei} 是 N 的一组基，于是存在 bj 使得

aei =
r∑

j=1

bjdjej.

因为 e1, e2, · · · , er 线性无关，于是 a = bidi ∈ ⟨di⟩，即 annyi ⊂ ⟨di⟩，故 annyi = ⟨di⟩.
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当 i = r + 1, · · · ,m 时，对任意 a ∈ annyi 有 ayi = 0，即

ayi = aη(ei) = η(aei) = 0.

于是 aei ∈ ker η = N，而 {diei} 是 N 的一组基，于是存在 lj 使得

aei =
r∑

j=1

ljdjej.

因为 e1, e2, · · · , em 线性无关，于是 a = 0，故 annyi = {0}.

设
m∑
i=1

ciyi = 0, ci ∈ D，则

η

(
m∑
i=1

ciei

)
=

m∑
i=1

ciη(ei) =
m∑
i=1

ciyi = 0,

所以
m∑
i=1

ciei ∈ N . 而 {diei} 是 N 的一组基，于是存在 hj 使得

m∑
i=1

ciei =
r∑

j=1

hjdjej.

因为 e1, e2, · · · , em 线性无关，故

ci =

hidi, i = 1, 2, · · · , r

0, i = r + 1, · · · ,m.

而当 i = 1, 2, · · · , r 时，ciyi = hidiyi = 0，i = r+ 1, · · · ,m 时，ciyi = 0，故
m∑
i=1

Dyi 是直和.

故

M ′ =
r⊕

i=1

Dyi ⊕
m⊕

i=r+1

Dyi.

annyi 已如上述.

注. 分解中没有提及唯一性，因为生成元的个数是不唯一的，添加若干线性相关的元素后仍
能作为生成元，于是前者的项数不唯一. 但前者中非零项的个数唯一，对应的不变因子也是
唯一的. 后者的项数 m− r 是唯一的.

注. 因为没有 anndi ̸= D 的限制，于是 d1, d2, · · · , dr 中很可能有 1.

注. 秩的可加性：r(M/N) = r(M)− r(N)，即 r(M) = r(N) + r(M/N).

注. 自由模的商模未必仍是自由模，即使在 PID 上.
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由上述定理，得到 PID 上有限生成模的第一、第二标准分解式的计算方法.

问题 1. 设 D 是 PID，M ′ 是 D 上的有限生成模，x1, x2, · · · , xm 为生成元组.求 M ′ 的第一、

第二标准分解式，初等因子组和不变因子组.

解. 步骤如下.

(1) 取 D 上秩 m 的自由模 M 及它的一组基 e′1, e
′
2, · · · , e′m，作满同态

η :M →M ′, η(e′i) = xi, i = 1, 2, · · · ,m.

求出 N = ker η，有 M/N ∼= M ′.

(2) 取 N 的一个生成组 (f ′
1, f

′
2, · · · , f ′

n)，则存在唯一的 m× n 矩阵 A 使得

(f ′
1, f

′
2, · · · , f ′

n) = (e′1, e
′
2, · · · , e′m)Am×n.

(3) 把 A 化为它的相抵标准形 B，则存在可逆方阵 P，Q 使得

B = PAQ =




d1

d2
. . .

dr

 O

O O


m×n

其中 d1, d2, · · · , dr ̸= 0，且 di | di+1, i = 1, 2, · · · , r − 1.

(4) 取 M 的基 (e1, e2, · · · , em) = (e′1, e
′
2, · · · , e′m)P−1，取 N 的生成组 (f1, f2, · · · , fn) =

(f ′
1, f

′
2, · · · , f ′

n)Q，则有

(f1, f2, · · · , fn) = (e1, e2, · · · , em)B,

于是 (f1, f2, · · · , fr) = (d1e1, d2e2, · · · , drer) 是 N 的一组基.

(5) 由此写出 M ′ 的不变因子组 {d1, d2, · · · , dr} 和 M ′ 的第二标准分解式 (可能有零项).

(6) 由不变因子组求初等因子组，去掉形式不变因子 1，于是 di ∈ D∗\U，可作因子分解，得
到素元素的方幂.

(7) 由初等因子组写出 M ′ 的第一标准分解式.

注. 这套步骤不依赖于之前主理想整环上有限生成模的分解.其中第 (3)步最麻烦，因为要求
出 B，还要记住做的变换 P 与 Q. 为方便求 P 与 Q，可以在对 A 作变换的时候附带两个

单位矩阵一起变换，即对

(
Im A

In

)
作变换，得到变换的轨迹 P 和 Q，最终化为

(
P B

Q

)
.
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4 PID 上矩阵相抵标准形的唯一性
定义 5 (子式). 设 A 是 m × n 矩阵，任取 r 行 r 列 (r < min{m,n})，得到的这个 r 阶方

阵的行列式称为 A 的 r 级子式.

定义 6 (行列式因子). 矩阵 A 的所有 r 级子式的最大公因子称为 A 的 r 级行列式因子，记

作 Dr(A).

性质 5. A 的各级行列式因子唯一.

证明. 因为相伴意义下最大公因子唯一.

性质 6. Dk(A) | Dk+1(A).

定义 7 (秩). 若 Dr(A) ̸= 0，Dr+1(A) = 0，则称 A 的秩为 r，记作 r(A) = r.

定理 3. 设 D 是 PID，A，B 是 D 上 m× n 矩阵. 若 A 与 B 相抵，则 A 与 B 在相伴意

义下有相同的各级行列式因子.

证明. 即证初等变换不改变行列式因子. 仅证明行初等变换，列初等变换类似可证明.
第一类：B = P (i, j)A，于是 B 的每个 k 阶子式与 A 的某个 k 阶子式最多差一个负

号.
第二类：B = P (i(c))A，于是 B 的每个 k 阶子式与 A 的某个 k 阶子式相差一个可逆

元.
第三类：B = P (j, i(c))A，于是 B 中不含第 j 行或者同时含第 i 行和第 j 行的那些 k

阶子式都与 A 的 k 阶子式相等. 对于 B 中含第 i 行不含第 j 行的子式，可化为 A 的一个

k 阶子式与 A的另一个 k 阶子式的 ±c倍的和，于是有 Dk(A) | Dk(B).而 P 是可逆的，于

是有 Dk(B) | Dk(A)，故 Dk(A) ∼ Dk(B).

定理 4. 设 D 是 PID，A 是 D 上的 m× n 矩阵. 若 d1, d2, · · · , dr 是 A 的不变因子，则有

Dk(A) ∼
k∏

i=1

dk, ∀k = 1, 2, · · · , r.

即 dk ∼ Dk(A)/Dk−1(A), k = 2, 3, · · · , r.

证明. 不妨设 A 是相抵下的标准形.

A =




d1

d2
. . .

dr

 O

O O


m×n



5 PID 上矩阵在相抵下的全系不变量 10

其中 d1, d2, · · · , dr ̸= 0，且 di | di+1, i = 1, 2, · · · , r − 1.
于是 A 的 1 级子式为 d1, d2, · · · , dr，且 1 级行列式因子为 d1.A 的 2 级子式为

d1d2, d1d3, · · · , d1dr, d2d3, · · · , · · · , drdr,

且最大公因子为 d1d2，于是 D2(A) = d1d2. 以此类推即可.

定理 5. 设 D 是 PID，A 是 D 上 m× n 矩阵，记 A 的相抵标准形为

B =




d1

d2
. . .

dr

 O

O O


m×n

则 d1, d2, · · · , dr 在相伴意义下是唯一的，从而 A 的相抵标准形是唯一的.

证明. 若 B′ 也是标准形且不变因子为 d′1, d
′
2, · · · , d′r，则对任意 k = 1, 2, · · · , r 有 Dk(B

′) ∼
Dk(B)，从而 d′k ∼ dk.

注. 上述定理给出了主理想整环上有限生成模的第二标准分解式的唯一性的证明. 去掉 M ′

中的零子模，即得原来的第二标准分解式的唯一性.

5 PID 上矩阵在相抵下的全系不变量
定理 6. 设 D 是 PID，A，B 是 D 上 m× n 矩阵，则 A 与 B 相抵当且仅当 A 与 B 在相

伴意义下有相同的不变因子组，当且仅当 A 与 B 在相伴意义下有相同的行列式因子组，当

且仅当 A 与 B 在相伴意义下有相同的初等因子组和秩.

注. 不变因子能确定初等因子，但仅有初等因子不能确定不变因子，因为不知道有多少形式
不变因子，秩可以对不变因子的数量作限制.

问题 2. 求 PID 上矩阵 Ã 的相抵标准形.

解. 关键是求不变因子组 d1, d2, · · · , dr.
方法一：初等变换法. 把 Ã 通过初等变换化成

B̃ = PÃQ =




d1

d2
. . .

dr

 O

O O


m×n
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的形式，当需要写出 P 和 Q 时选用此方法.
方法二：行列式因子法.从高到低计算 Ã的各级行列式因子，从而得到不变因子 d1, d2, · · · , dr.

适用于 0 较多或可逆元较多的矩阵.
方法三：对角化法. 用初等变换把 Ã 化为对角形，再把对角线上的元素分解为素元素方

幂的乘积，则这些素元素方幂的集合就是 Ã 的初等因子组，对角线上非零元素的个数就是

Ã 的秩 r(Ã)，于是可以写出不变因子组.
方法四：混合法. 通过初等变换把 Ã 化为分块对角矩阵，再对每一对角块用前面的任何

一种方法求初等因子和秩.

例 1. 求下列矩阵的相抵标准形. 
1− λ λ2 λ

λ λ −λ
1 + λ2 λ2 −λ2


解. 通过初等变换化为 

1

λ

λ+ λ2


6 线性变换标准形的求法

问题 3. 几何地，设 V 是域 F 上的 n 维线性空间，A 是 V 上的线性变换.A 在 V 的一组

基 {u1, u2, · · · , un} 下的方阵为 A. 求 A 的第一、第二型有理标准形. 当初等因子都是一次
因式的乘积时，求 A 的 Jordan 标准形.

问题 4. 代数地，求域上方阵 A 在相似下的第一、第二型有理标准形，当初等因子都是一次

因式的乘积时，求 A 的 Jordan 标准形.

上述两个问题是一致的. 现已有

A (u1, u2, · · · , un) = (u1, u2, · · · , un)A,

把 V 看作 A 定义的 F [λ]-模，则 V 是 PID 上有限生成扭模.
取 n秩自由模 F [λ](n)的一组基 e′1, e

′
2, · · · , e′n，作满同态 η : F [λ](n) → V，η(e′i) = ui，则由

同态基本定理，F [λ](n) / ker η ∼= V .记 N = ker η，只要找出 N 的一个生成组 {f ′
1, f

′
2, · · · , f ′

n}
即可. 即找出 PID 上方阵 B̃，使

(f ′
1, f

′
2, · · · , f ′

n) = (e′1, e
′
2, · · · , e′n)B̃.
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定理 7. 设 V 是域 F 上的 n 维线性空间，A 是 V 上的线性变换，A 在 V 的一组基

{u1, u2, · · · , un}下的方阵为 A = (aij)n×n.取 n秩自由模 F [λ](n) 的一组基 e′1, e
′
2, · · · , e′n，作

满同态 η : F [λ](n) → V，η(e′i) = ui，记 N = ker η，则 f ′
1, f

′
2, · · · , f ′

n 是 N 的一组基. 其中

f ′
j = λe′j −

n∑
i=1

aije
′
i, j = 1, 2, · · · , n，即

(f ′
1, f

′
2, · · · , f ′

n) = (e′1, e
′
2, · · · , e′n)(λI −A).

证明. 对任意 j = 1, 2, · · · , n，有

η(f ′
j) = η

(
λe′j −

n∑
i=1

aije
′
i

)
= λη(e′j)−

n∑
i=1

aijη(e
′
i) = A (uj)−

n∑
i=1

aijui = 0.

下证 f ′
1, f

′
2, · · · , f ′

n 是生成元且线性无关.

令M = ⟨f ′
1, f

′
2, · · · , f ′

n⟩，则M ⊂ N .考虑商模 F [λ](n) /M，由于 f ′
j = λe′j−

n∑
i=1

aije
′
i ∈M，

于是

λe′j +M =
n∑

i=1

aije
′
i +M.

定义映射 ψ : F [λ](n) /M → V，ψ(e′j +M) = uj，并线性扩展. 由于在商模中 λ 的作用由矩

阵 A 给出，于是

ψ(λ(e′j +M)) = ψ

(
n∑

i=1

aije
′
i +M

)
=

n∑
i=1

aijui = A (uj) = λ · ψ(e′j +M),

因此 ψ 是 F [λ]-模同态. 由于 {e′j + M} 生成 F [λ](n) /M，且 ψ 将其映到 V 的一组基

{u1, u2, · · · , un}，故 ψ 是同构.
另一方面，满同态 η : F [λ](n) → V 的核为 N，由同态基本定理诱导同构 η′ : F [λ](n)/N →

V，满足 η′(e′j+N) = uj。比较 ψ与 η′，它们都是同构且将相应的陪集映到相同的基元素，从而

有交换性. 由此可得 F [λ](n)/M ∼= V ∼= F [λ](n)/N . 考虑到自然投影 F [λ](n)/M → F [λ](n)/N

（由包含 M ⊆ N 诱导）是同构，因此 M = N . 故 f ′
1, f

′
2, · · · , f ′

n 生成 N .
下面证明 f ′

1, f
′
2, · · · , f ′

n 线性无关.
假设存在多项式 hi(λ) 使得

n∑
j=1

hj(λ)f
′
j = 0.

代入 f ′
j 表达式并整理得

n∑
i=1

(
hi(λ)λ−

n∑
j=1

aijhj(λ)

)
e′i = 0.
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由于 {e′i} 是自由模的基，系数为零：

hi(λ)λ−
n∑

j=1

aijhj(λ) = 0, i = 1, 2, · · · , n.

写成矩阵形式为 (λI −A)h(λ) = 0，其中 h(λ) = (h1(λ), h2(λ), · · · , hn(λ))⊤. 将 λI −A 视

为域 F (λ) 上的矩阵，其行列式非零（为特征多项式），故可逆，于是 h(λ) = 0，即所有

hj(λ) = 0. 因此 f ′
1, f

′
2, · · · , f ′

n 线性无关。

下面可以给出问题3和问题4的解法.

解. 设已有
A (u1, u2, · · · , un) = (u1, u2, · · · , un)A,

则计算步骤如下.

(1) 写出 A 的特征矩阵 λI −A.

(2) 求出 λI −A 的不变因子组，作分解得初等因子组.

(3) 写出第一、第二有理标准形. 当初等因子都是一次因式时，写出 Jordan 标准形.

注. 因为 λI −A 是满秩的，于是全系不变量为不变因子组、行列式因子组和初等因子组.

例 2. 求下列复方阵的第一、第二型有理标准形和 Jordan 标准形.

A =


1 2 0

0 2 0

−2 −2 −1


解. λI −A = · · ·

至此，讨论了例1和例2两类问题的解法. 例1是求 PID 上矩阵 Ã 在相抵下的标准形，

例2是求域 F 上方阵 A 在相似下的标准形. 它们讨论的对象不同，讨论的等价关系不同，标
准形不同. 但后一类问题可以借助 Ã = λI −A 化为前一类问题. 此外，有下述定理.

定理 8. 域 F 上方阵 A 和 B 相似当且仅当 F [λ] 上矩阵 λI −A 与 λI −B 相抵.

证明. 参见高等代数.


	问题背景与思路
	PID上矩阵在相抵下的标准形
	第二标准分解式的又一证明
	PID上矩阵相抵标准形的唯一性
	PID上矩阵在相抵下的全系不变量
	线性变换标准形的求法

