
线性变换的标准形

设 A 是域 F 上 n 维线性空间 V 上的线性变换，在不同的基下有不同的矩阵，由线性

代数可知，这些矩阵是相似的. 现想找到一组合适的基，使得线性变换 S 在该基下的矩阵

简单且能反映线性变换的本质.
以向量的加法为模的加法，对任意 f(λ) ∈ F [λ]，定义乘法

f(λ) · x = f(A )(x),

则线性空间 V 可以看作 F [λ]-模.

命题 1. F [λ]-模 V 是 PID 上有限生成扭模.

证明. F [λ] 是域上的多项式环，是 Euclid 环，自然是 PID. 同时，V 有一组基，与 F 相乘

可以生成 V 中所有元素，于是 V 是有限生成的，基是 V 的生成元组.
设 f(λ) 是 A 的特征多项式，则 f(A ) = O，即零变换. 于是

f(λ) · x = O(x) = 0, ∀x ∈ V,

而 f(λ) 是 n 次多项式，不为 0，于是任意 x ∈ V 都是扭元.

1 Frobenius 标准形
由主理想整环上有限生成模的第二标准分解式，有

V =
m⊕
i=1

F [λ] zi, annzi = ⟨di⟩,

其中 di | di+1, i = 1, 2, · · ·m− 1.

命题 2. 记 Vi = F [λ] zi，则 Vi 是 A 的不变子空间.

证明. 对任意 f(λ)zi, g(λ)zi ∈ Vi，有

f(λ)zi + g(λ)zi = (f(λ) + g(λ))(zi) ∈ Vi,

对任意 a ∈ F，有

a(f(λ)zi) = (af(λ))zi ∈ Vi,

于是 Vi 是 V 的子空间.
对任意 f(λ)zi ∈ Vi，

A (f(λ)zi) = λ · (f(λ)zi) = (λf(λ))zi ∈ Vi,

于是 Vi 是 V 的不变子空间.
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注. 记 Ai = A
∣∣
Vi
，称为 Vi 诱导的线性变换.

现只需讨论循环模

V = F [λ] z,

因为在每一个循环模 Vi 中找到了最佳的基与相应的矩阵，就可以把这些基拼起来得到整个

空间的基.

定理 1. 设 A 是域 F 上线性空间 V 的线性变换. 由 A 定义的 F [λ]-模 V 的不变因子组为

{d(λ)}，即
V = F [λ] z, annz = ⟨d(λ)⟩.

记 deg d(λ) = n，则有

1. dimV = deg d(λ) = n. 且 z,A z,A 2z, · · · ,A n−1z 是 V 的一组基.

2. 记 d(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0，则

A (z,A z,A 2z, · · · ,A n−1z) = (z,A z,A 2z, · · · ,A n−1z)



0 −a0

1 0 −a1

1
. . . ...
. . . 0 −an−2

1 −an−1


证明. 1. 反设 z,A z,A 2z, · · · ,A n−1z 线性相关，则有不全为零的 b0, b1, · · · , bn−1 ∈ F 使

b0 + b1A z + · · ·+ bn−1A
n−1z = 0,

则

(b0 + b1λ+ · · ·+ bn−1λ
n−1)z = 0.

于是 b0 + b1λ + · · · + bn−1λ
n−1 ∈ annz = ⟨d(λ)⟩ 是 d(λ) 的倍式，这与 d(λ) 是 n 次的矛盾，

于是 z,A z,A 2z, · · · ,A n−1z 线性无关.
又对任意 f(λ)z ∈ V，做带余除法，有 f(λ) = q(λ)d(λ) + r(λ)，其中 deg r(λ) <

n. 于是 f(λ)z = q(λ)d(λ)z + r(λ)z = r(λ)z 可被 z,A z,A 2z, · · · ,A n−1z 线性表出. 故
z,A z,A 2z, · · · ,A n−1z 是一组基，且 deg d(λ) = dimV .

2. 对 i = 0, 1, · · · , n− 2，有

A (A iz) = A i+1z = (z,A z, · · · ,A n−1z)



0
...
1
...
0


i
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因为 (λn + an−1λ
n−1 + · · ·+ a1λ+ a0)z = d(λ)z = 0，于是

A nz + an−1A
n−1z + · · ·+ a1A z + a0z = 0,

A nz = −a0z − a1A z − · · · − an−1A
n−1z,

于是有

A (z,A z,A 2z, · · · ,A n−1z) = (z,A z,A 2z, · · · ,A n−1z)



0 −a0

1 0 −a1

1
. . . ...
. . . 0 −an−2

1 −an−1


.

注. 矩阵



0 −a0

1 0 −a1

1
. . . ...
. . . 0 −an−2

1 −an−1


称为 d(λ) 的友矩阵，与 d(λ) 互相唯一确定.

注. 几何地，对 A 的循环空间 V 而言，A 的特征多项式就是 A 的极小多项式. 代数地，首
一多项式的友矩阵的特征多项式就是极小多项式.

定理 2. 设 A 是域 F 上的线性空间 V 上的线性变换. 由 A 定义的 F [λ]-模

V =
m⊕
i=1

F [λ] zi, annzi = ⟨di(λ)⟩.

其中 di(λ) 是首 1 多项式且 di | di+1, i = 1, 2, · · · , n− 1. 则

1. 在 V 中存在一组基，使得 A 在这组基下的矩阵为准对角矩阵


B1

B2

. . .
Bm

，
称为 A 的 Frobenius 标准形或 (第一型) 有理标准形，其中 Bi 是 di(λ) 的友矩阵.

2. dimV =
m∑
i=1

deg di(λ).

3. annV = ⟨dm(λ)⟩，即 A 的极小多项式是最后一个不变因子.

4. A 的特征多项式 f(λ) = |λid − A | =
m∏
i=1

di(λ).
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5. A 的特征多项式 f(λ) 是 A 的零化多项式.

证明. 1. 由定理1，对任意 F [λ] zi，有不变因子 di(λ)，线性变换A 在基 βi = {z,A z, · · · ,A ni−1z}
下的矩阵 Bi 为 di(λ) 的友矩阵.
把每个循环子模 F [F ] zi 的基 βi 取并，即为 V 的一组基，且 A 在这组基下的矩阵为

准对角矩阵，有

A (β1, β2, · · · , βm) = (β1, β2, · · · , βm)


B1

B2

. . .
Bm

 .

2. 由定理1，dimVi = deg di(λ)，于是

dimV =
m∑
i=1

dimVi =
m∑
1

deg di(λ).

3. annV =
m⋂
i=1

annVi = annVm = ⟨dm(λ)⟩.

4. |λid − A | =
m∏
i=1

|λI − Bi| =
m∏
i=1

di(λ).

5. 对任意 x ∈ V，

f(A )(x) = f(λ) · x =
m−1∏
i=1

di(λ) · dm(λ)x = 0,

于是 f(A ) = O.

注. 1. A 的极小多项式即它的 Frobenius 标准形的极小多项式，是 B1, B2, · · · , Bm 的极

小多项式的最小公倍式 [d1(λ), d2(λ), · · · , dm(λ)] = dm(λ)，即最后一个不变因子.

2. 记 m(λ) = dm(λ) 是 A 的极小多项式，则 A 的特征多项式 f(λ) =
m−1∏
i=1

di(λ) ·m(λ).

若不考虑根的重数，则 m(λ) 与 f(λ) 的根一致.

3. 设 A 的某组基下的矩阵为 A，A 的 Frobenius标准形为 B，则定义矩阵 A的 Frobenius
标准形为 B，A 的不变因子组为 {di(λ)}.

4. 方阵 A 与它的 Frobenius 标准形相似.

5. 域上方阵相似的充要条件是他们有相同的 Frobenius 标准形.

6. A 与它的 Frobenius 标准形互相唯一确定.
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2 Jordan 标准形与第二型有理标准形
定义 1 (代数闭域). 域上非常值的一元多项式在域中有根，则称该域是代数闭域.

定理 3. 设 F 是代数闭域，V 是 F 上的线性空间，A 是 V 上的线性变换. 则在 V 中存在

一组基，使得 A 在这组基下的矩阵为


C1

C2

. . .
Ct

，称为 A 的 Jordan 标准形. 其

中 Ci =


λi

1 λi

1
. . .
. . .

. . .
1 λi

，称为 Jordan 块.

证明. 由 PID 上有限生成模的第一标准分解式，有

V =
t⊕

i=1

F [λ] zi, annzi = ⟨pi(λ)ki⟩.

记 Vi = F [λ] zi，可以证明 Vi是A -子空间.因为 F 是代数闭域，可以记 ⟨pi(λ)ki⟩ = ⟨(λ−λi)
ki⟩.

可以证明，zi, (A − λiid)zi, · · · , (A − λiid)ki−1zi 是 Vi 的一组基，记作 β. 且由于

A
∣∣
Vi
= λiid + (A

∣∣
Vi
− λiid),

λiidβ = β



λi

λi

. . .
. . .

λi


.

(A
∣∣
Vi
− λiid)β = β



0

1 0

1
. . .
. . . . . .

1 0


.

故

A
∣∣
Vi
(zi, · · · , (A − λiid)ki−1zi) = (zi, · · · , (A − λiid)ki−1zi)



λi

1 λi

1
. . .
. . . . . .

1 λi


.
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注. 1. Jordan 标准形和它的初等因子组互相唯一确定. 不计次序下 Jordan 标准形和初等
因子唯一确定.

2. 设 A 的某组基下的矩阵为 A，A 的 Frobenius标准形为 B，则定义矩阵 A的 Frobenius
标准形为 B，A 的不变因子组为 {di(λ)}.

命题 3. 代数闭域上方阵相似的充要条件是它们有不计次序下相同的 Jordan 标准形.

命题 4. 即使不是代数闭域，只要所有的初等因子都是一次因式的方幂，就可以在 V 中找出

一组基使 A 在这组基下的方阵是 Jordan 标准形.

定理 4. 设 A 是域 F 上线性空间 V 上的线性变换，由 A 定义的 F [λ]-模 V 的第一标准分

解式为

V =
t⊕

i=1

F [λ] zi, annzi = ⟨pi(λ)ki .

其中 pi 是首 1 的不可约多项式. 则在 V 中存在一组基，使得 A 在这组基下的方阵为准对

角矩阵


B1

B2

. . .
Bm

，称为 A 的第二型有理标准型. 其中 Bi 是 pi(λ)
ki 的友矩阵.

注. 若 F 是代数闭域，则第二型有理标准形不是 Jordan 标准形. 那么，能否找到 A 的一种

标准形，使 Jordan 标准形是这种标准形在代数闭域下的特例?

3 三种标准形的求解

例 1. 设 V 是 C 上 6 维线性空间，A 是 V 上的线性变换. 若把 V 看成 A 定义的 C [λ]-
模时，V = C [λ] x1 ⊕ C [λ] x2 ⊕ C [λ] x3，且 annx1 = ⟨(λ + 1)2⟩，annx2 = ⟨λ2 − 2λ + 1⟩，
annx3 = ⟨λ2 − 1⟩，求 A 的 Frobenius 标准形、Jordan 标准形与第二型有理标准形.

解. λ2 − 2λ+ 1 = (λ− 1)2，λ2 − 1 = (λ+ 1)(λ− 1). 记 y1 = x1, y2 = x2，存在 y3, y4 ∈ V 使

得 x3 = y3 + y4，于是

C [λ] x3 = C [λ] y3 ⊕ C [λ] y4.

其中 anny3 = ⟨λ+ 1⟩，anny4 = ⟨λ− 1⟩. 于是初等因子为{
λ+ 1, (λ+ 1)2, λ− 1, (λ− 1)2

}
.
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不变因子为

d1 = λ+ 1 λ− 1 = λ2 − 1

d2 = (λ+ 1)2 (λ− 1)2 = λ4 − 2λ2 + 1

于是 Frobenius 标准形为 

0 1

1 0

0 −1

1 0 0

1 0 2

1 0


Jordan 标准形为 

−1

−1

1 −1

1

1

1 1


第二型有理标准形为 

−1

0 −1

1 −2

1

0 −1

1 2


例 2. 设 V 是 Q上的 7维线性空间，A 是 V 上的线性变换.若把 V 看成 A 定义的 Q [λ]-模
时，

V =
4⊕

i=1

Q [λ] xi,

且 annx1 = ⟨λ3 − λ2 − 8λ+ 12⟩，annx2 = ⟨λ− 2⟩，annx3 = ⟨λ2 + λ− 6⟩，annx4 = ⟨λ+ 1⟩.
求 A 的 Frobenius 标准形和第二型有理标准形. 若可能，也写出 A 的 Jordan 标准形.

解. λ3 − λ2 − 8λ+ 12 = (λ− 2)2(λ+ 3)，λ2 + λ− 6 = (λ− 2)(λ+ 3).
存在 y1, y2 ∈ V 使 x1 = y1 + y2，其中 anny1 = ⟨(λ− 2)2⟩，anny2 = ⟨λ+ 3⟩.
记 y3 = x2，则 anny3 = ⟨λ− 2⟩.
存在 y4, y5 ∈ V 使得 x = y4 + y5，其中 anny4 = ⟨λ− 2⟩，anny5 = ⟨λ+ 3⟩.
记 y6 = x4，则 anny6 = ⟨λ+ 1⟩.



3 三种标准形的求解 8

于是得到 V 的第一标准分解式

V =
6⊕

i=1

Q [λ] yi.

且 annyi 如上. 于是初等因子为{
λ+ 1, λ− 2, λ− 2, (λ− 2)2, λ+ 3, λ+ 3

}
.

不变因子为

d1 = 1 λ− 2 1 = λ− 2

d2 = 1 λ− 2 λ+ 3 = λ2 + λ− 6

d3 = λ+ 1 (λ− 2)2 λ+ 3 = λ4 − 9λ2 + 4λ+ 12

于是 Frobenius 标准形为 

2

0 6

1 −1

0 −12

1 0 −4

1 0 9

1 0


由于所有的初等因子都是一次因式的方幂，于是存在 Jordan 标准形如下

1

2

2

2

1 2

−3

−3


第二有理标准形为 

−1

2

2

0 −4

1 4

−3

−3




	Frobenius标准形
	Jordan标准形与第二型有理标准形
	三种标准形的求解

